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Analytical formulas for the  

“chaotic paths”-> Moser curves 

Taylor Series 
expansion around an 

unstable periodic point 
(x0,y0) 

Hénon mapping  linear transformation  

near-identity canonical transformation Φ ≡ (Φ1, Φ2)  

mapping’s canonical form 



“The Road of Chaos” 



Moser Region of Convergence 



Application in barred-spiral galaxies 

                   equipotentials 



 Averaged Hamiltonian  - Mapping 

Hadjidemetriou  Method   
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Epicyclic analysis around corotation and Taylor expansion 

Epicyclic action angle variables   
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φ(φ, P ) action-angle variables

r(φ , ) action-angle variablesrJ

Canonical transformation via Lie series-> 

           eliminating fast angle φr ! 

Normal form construction up to 2nd order in actions 
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Convergence regions in barred-spiral 

galaxies 
Averaged mapping : 

 Standard map 
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x  = x + y + K×Sin[x]

y  = y + K×Sin[x]

Convergence region 

 in configuration space: 

 Spirals 



Numerical versus analytical 

results 
Manifolds of the apocenters of  

the periodic orbit PL1  
Voglis, N.; Tsoutsis, P.; 

 Efthymiopoulos, C. 
2006-2008 

Analytical convergence regions 

of the apocenters 
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Manifolds of the pericenters of  

the periodic orbit PL1 

Analytical convergence regions 

of the pericenters 



Conclusions 
 Moser invariant curves determine the chaotic paths and the structure of chaos 

in dynamical systems around a hyperbolic fixed point  via analytical convergent 
series  

 

 The Moser region of convergence is a kind of attractor of all chaotic orbits and 
it does not communicate with the outer region of the phase space 

 

 The Moser region of convergence has very interesting applications in barred-
spiral galaxies explaining the stickiness and the very slow diffusion of the 
chaotic orbits. It also explains the spiral shape of the arms. 

 

 

 An interesting talk of the use of hyperbolic invariant manifolds in 
astrodynamics will be given by Dr. C. Efthymiopoulos on Wednesday “Theory 
and applications of hyperbolic invariant manifolds in astrodynamics” 
 
 


