

The 12th Hellenic Astronomical Conference 28 June - 2 July 2015, Thessaloniki

Population statistics of beamed sources *I. Liodakis*¹, *V. Pavlidou*^{1,2}

¹Department of Physics, University of Crete,²Foundation for Research and Technology

<u>What is a Blazar?</u>

Most Active of Galaxies:

- BL Lac objects (BL Lacs).
- -Flat Spectrum Radio Quasars (FSRQs).

Jet oriented towards our line of sight:

- -Superluminal motion.
- Boosted emission.
- Extreme variability across the electromagnetic spectrum.
- -High degree of polarization in the jets

Motivation.

What is the relativistically induced spread of timescales in blazar jets?

Is there any difference in beaming between BL Lacs and FSRQs?

Are there reliable Doppler factor estimates?

29/06/2015

A new model for Blazars.

-Focus on simplicity and acceptability criteria

-Rely on trustworthy observables such as apparent velocity and redshift.

-Treat BL Lacs and FSRQs as distinct populations.

-Simultaneously fit the unbeamed luminosity and bulk Lorentz factor distributions.

M.O.J.A.V.E sample:

- Statistically complete
- Flux-limited (1.5 Jy)

(Lister & Homan 2005)

29/06/2015

Final Sample: FSRQs : 76 BL Lacs : 16

Calculations:

Step 1: Determine the number of sources in each redshift bin.

Step 2: Draw random values for the:

3) unbeamed luminosity

for each source.

Step 3: Use flux density equation.

test.

Flux

 $\Delta t'/\Delta t$ follows an exponential distribution with mean~0.28 for both classes!!!

Contact: liodakis@physics.uoc.gr

Do BL Lacs and FSRQs have different beaming properties?

4.0

3.5 3.0

-Timescales are modulated in the same way

- $\Gamma\theta$ distributions are identical

BL Lacs and FSRQs do **NOT** have different beaming properties

Differences in the time domain are intrinsic!!!

BL Lacs

Which of the single-blazar Doppler factor methods can adequetely describe blazars as a population?

Contact: liodakis@physics.uoc.gr

29/06/2015

Contact: liodakis@physics.uoc.gr

Conclusions.

1) Timescale modulation factor follows exponential distribution (mean~0.28) for both classes.

2) Different beaming between sources in a flux-limited sample: $\Gamma\theta \neq 1$

3) The differences of BL Lacs and FSRQs in the time-domain are **not** due to beaming!

4) The variability Doppler factor method is the most accurate for describing blazars.

Equipartition holds!

5) We can extract information about the distribution of time-like events in the rest-frame by fitting the observed probability density function.

arXiv:1412.2634

arXiv:1412.2638

Additional slides

Doppler factor distributions.

BL Lacs

29/06/2015

Contact: liodakis@physics.uoc.gr

FSRQs

Flux density distribution

BL Lacs

FSRQs

Luminosity function

Viewing angle distribution

