VARIABILITY SIGNATURES OF THE HADRONIC MODEL

A. Mastichiadis University of Athens

TALK OUTLINE

- Hadronic Models: key ideas and processes
- MW fits and simulated variability of blazars
- Proton supercriticalities: application to GRBs

In collaboration with

- Maria Petropoulou
- Stavros Dimitrakoudis and
- Georgios Vasilopoulos
- Dimitrios Giannios

THE MULTI-MESSENGER ERA

© Phillip Colla / Oceanlight.com

Spectra

Lightcurves

BLAZARS: LEPTONIC MODEL

... AND THE HADRONIC MODEL

GRBs: LEPTONIC OR HADRONIC

INTERACTION OF NUCLEONS WITH PHOTON FIELDS

photopair production

$$N + \gamma_{target} \longrightarrow N + e^+ + e^-$$

 $s^{1/2}_{threshold} = m_p + 2m_e$

photomeson production

$$N + \gamma_{target} \longrightarrow N + \pi s + ...$$

 $s^{1/2}_{threshold} = m_p + m_{\pi 0}$

THE HADRONIC MODEL: PHYSICAL PROCESSES

Courtesy of R.J. Protheroe

INCREASING THE PROTON INJECTED LUMINOSITY

Proton injected luminosity is increased by a factor 3 -at some point the system becomes supercritical

Dimitrakoudis et al. 2012

THE STEP TO SUPERCRITICALITY

A PROTON SUPERCRITICALITY 'ZOO'

PROTONS → BETHE-HEITLER PAIRS

Loops are a way of extracting efficiently energy stored in protons

HADRONIC MODELS AS DYNAMICAL SYSTEMS

When supercritical, depending on the (constant) proton injection rate,the system goes from limit cycle behavior to damped oscillations tosteady state*M. Petropoulou & AM 2012*

HADRONIC MODELS: SPECTRAL SIGNATURES

When system subcritical → Blazars

AM, M. Petropoulou, S. Dimitrakoudis 2013

When system supercritical → GRBs

M. Petropoulou, S. Dimitrakoudis, AM, D. Giannios 2013

VARIABILITY IN THE SUBCRITICAL REGIME

Assume small amplitude random-walk variations in proton and electron injection

Injection and spectra when p and e totally correlated

SUBCRITICAL (AGN) REGIME

-9.6

undendendendendend od

Correlated: no time lag Correlated: time lag of 80 to Uncorrelated

When electrons-protons are correlated, TeV (hadronic) and X-rays (leptonic) vary quadratically Even when electronsprotons totally uncorrelated, X and TeV retain some correlation

BLAZAR Mrk 421: X-TeV CORRELATIONS

Fossati et al 2008

VARIABILITY IN SUPERCRITICAL REGIME

SUPERCRITICAL VARIABILITY: POWER-SPECTRA

M.Petropoulou, G.Vasilopoulos, AM (in prep)

COMPARING...

Observed GRB lightcurves

Synthetic lightcurves

CONCLUSIONS

One-zone hadronic model

- Accurate secondary injection (photopion + Bethe Heitler)
- Time dependent energy conserving PDE schme
- •Two modes:
- Subcritical (linear) regime

Spectrum: fits to blazar spectra (X-rays from electron synchrotron – γ -rays from secondary pion cascades)

Variability: TeV – X-rays quadratic – as (mostly) observed in blazars
Supercritical (nonlinear) regime

Spectrum: Optically thick $(\tau >>1)$ emission – large proton energy content turned into radiation

Variability: Burst-type of behavior if proton injection close to the threshold for supecriticality

Can these be a basis for a viable hadronic GRB model?