

 kapteyn astronomical institute

Too few and too light? TESTING ACDM COSMOLOGY WITH FIELD DWARF GALAXIES

Manolis Papastergis NOVA postdoctoral fellow Kapteyn Institute, the Netherlands

12th Hel.A.S conference

Thessaloniki 29 Jun 2015

MW-sized halo (Lovell+ 2012)

Halo Velocity Function

http://egg.astro.cornell.edu/alfalfa/

• ALFALFA is a blind 21-cm line survey, performed with the Arecibo radiotelescope (Giovanelli+ 2005).

- Largest HI-selected sample to date:
 - > 11 000 galaxies
 - ~ 3 000 deg² of sky

http://egg.astro.cornell.edu/alfalfa/

http://egg.astro.cornell.edu/alfalfa/

• ALFALFA directly measures:

redshift

http://egg.astro.cornell.edu/alfalfa/

• ALFALFA directly measures:

▶ redshift

integrated flux (HI mass)

http://egg.astro.cornell.edu/alfalfa/

• ALFALFA directly measures:

redshift

- integrated flux (HI mass)
- velocity width

The velocity function of galaxies

(Papastergis+ 2011,2015)

Galaxies vs. ACDM halos

Galaxies vs. ACDM halos

But wait a second... GALAXIES ≠ HALOS

http://egg.astro.cornell.edu/alfalfa/

• ALFALFA **cannot** measure:

► size

b shape, inclination

rotation curve

(Image from Jones+ 2015)

An easy way out?

 $V_{rot} - V_h$ relation in ΛCDM

The field "too big to fail" problem

Not the first to notice...

Also for field dwarfs: Ferrero+ 2012, Garrison-Kimmel+ 2014

Milky Way satellites (Boylan-Kolchin+ 2011,2012)

Any solutions?

The root of the problem

1. Large difference between abundance of small halos and dwarf galaxies

2. Impossible to fit dwarf kinematics with massive halos

Baryonic solutions in ACDM?

1. Reionization feedback

(Sawala+ 2015; also Okamoto+ 2008, etc.)

2. Core creation through starformation feedback

(di Cintio+2015; also Governato+2010, Brooks+Zolotov 2014, Onorbe+2015, etc.)

Do baryonic solutions work?

1. Reionization

Sawala+ 2015:

Do baryonic solutions work?

2. Reionization + cored profiles

Papastergis+ 2015: (based on hydro sims of Governato+ 2012, Brooks+Zolotov2014, Christensen+ 2014)

Brook+diCintio 2014:

Conclusions

"Too big to fail" problem: it is challenging to reproduce simultaneously the number density and internal kinematics of dwarf galaxies in ACDM

A solution must have the following characteristics:

- Lower the number of low mass halos
- Lower the velocity in the central parts of small halos

Within ACDM, there exist potential baryonic solutions. However, it is not yet clear whether they work or not

Ευχαριστώ για την προσοχή σας!

The root of the problem

1. Large difference between abundance of small halos and dwarf galaxies

2. Impossible to fit dwarf kinematics with massive halos

CDM

(Lovell+ 2012)

(Lovell+ 2012)

Warm dark matter?

WDM advantages:

1. Fewer lowmass halos

2. Less concentrated halos

Warm dark matter?

** The WDM particle mass must be $\leq 2 \text{ keV}$ **

The velocity widths of ALFALFA galaxies

The velocity widths of ALFALFA galaxies

Galaxies vs. ACDM halos

Building a realistic rotation curve:

$$\Omega_{\rm DM} \neq \Omega_{\rm m}$$

- Baryons (stars, gas) contribute to RC
- Adiabatic contraction of halo (?)

(Trujillo-Gomez+ 2011)

Observations vs. theory

(Klypin+ 2015)

(Trujillo-Gomez+ 2011)

(Trujillo-Gomez+ 2011)

(Trujillo-Gomez+ 2011)

(Trujillo-Gomez+ 2011)

An easy way out?

(Klypin+ 2015)

The field "too big to fail" problem in simple terms:

The rotation curves of dwarf galaxies in the field indicate that their host halos are quite ``light'' ($V_{h,max} \approx 20-40 \text{ km/s}$). However, in a CDM universe there are so many halos of this mass that we should be observing many more dwarf galaxies than we are.

Halo Velocity Function

