Non-parametric morphological classification of LIRGs

Alexandros Psychogyios^{1,2}

V. Charmandaris^{1,3}, L. Armus⁴, T. Diaz-Santos⁵, S. Haan⁶ and the GOALS team

(1) Department of Physics, University of Crete, Greece
(2) IESL/FORTH, Greece (3) National Observatory of Athens, Greece
(4) SSC/Caltech, USA (5) Diego Portales University, Santiago, Chile
(6) CSIRO, Australia

Introduction

Why Morphology ?

Property key to unveil the evolution of galaxies.

Local Universe

high-z Universe

Hubble's Tuning-fork

irregular shapes

Why LIRGs ?

Dominate the SFR at $z \sim 1$ and $z \sim 2$ (peak of galaxy assembly).

Rare in local Universe but thousand times more common at high-z.

Strongly related to the evolution of massive ellipticals.

Motivation

Quantify the morphology of LIRGs (GOALS, Armus et al. 2009) using HST optical to NIR imaging and search for clues of merging signatures via non-parametric coefficients.

Reliability of non-parametric coefficients as a function of λ . B-band (young stars) up to H-band (older stars)

Exploring correlations between the morphological indicators and properties of galaxies (sSFR).

Develop a robust and automated method to also classify in a consistent manner the morphologies of high-z systems.

 L_{IR} due to dust heating from an intense starburst within giant molecular clouds

Measuring galaxy Morphology

Visual classification

Parametric coefficients

i.e. Sersic index, n

Require a prescribed analytic function

$$I(r) = I_0 e^{-(r/a)^{1/n}}$$

Non-parametric coefficients

- Applied to Hubble types or interacting types
- Are measurable out to high-z

$$\begin{aligned} \text{Sini} &= \frac{1}{\left| \bar{f}_i \right| N(N-1)} \sum (2i - N - 1) \left| f_i \right| \\ M_{20} &= \log \left(\frac{\sum M_i}{M_{total}} \right) \\ \text{while} \quad \sum M_i < 0.2 f_{total} \end{aligned}$$

Method

Select the emitting region by creating a segmentation map

Input HST images

Expectation : most of the LIRGs should lie in the Mergers region

sSFR vs M₂₀

massive LIRGs

- moderate mass LIRGs
- Iow mass LIRGs

H-band

We confirm that : massive LIRGs have low sSFR (already evolved)

The more massive the LIRG, the more extended the object because the stellar mass is distributed over a larger area.

$sSFR vs M_{20}$

Summary

- Classifying the morphology of LIRGs in these 4 bands is not straightforward and the Gini-M₂₀ plane presents a number of degeneracies.
- M₂₀ separates well the double systems from isolated galaxies and is a better morphological tracer than Gini.
- The more massive the LIRG, the more extended the object.
- Not accurate to measure the size of dusty galaxies using optical observations.

Extras

Petrosian radius

Distance-independent way to describe the radial profile

Can't measure the radial profile of a galaxy out to arbitrarily large radii because, at some point, the light from the galaxy disappears into the noise of the background sky.

Surface brightness of the annulus = 20% of mean surface brightness of the inner circle

In order to compare galaxies to each other fairly, we must find some description which doesn't depend on distance

Gini, M₂₀ in different Petrosian radii

I-band

There is a trend of increasing the Gini and decreasing the M_{20} as we enlarge the emitting area of LIRGs.