Spatial variations in the mid-IR/radio correlation in Luminous Infrared Galaxies

Eleni Vardoulaki University of Crete

Collaborators: V. Charmandaris, L. Armus, E. J. Murphy, T. Diaz-Santos, P. Appleton and the GOALS Team

> Eleni Vardoulaki, Univ. of Crete eleniv@physics.uoc.gr; users.physics.uoc.gr/~eleniv

12TH HEL.A.S

outline

aims

- sample description
- methods:
 - monochromatic mid-IR/radio ratios q_8, q_{24}
 - dust-temperature T_d maps (70µm & 100µm)
- results: q_8 , q_{24} , T_d , radio-spectral-index α

conclusions

aims

- study AGN/SB connection in LIRGs
- study spatial variations of q_{8,24} in local LIRGs
- relate to spatially resolved galaxy properties, e.g.

dust-temperature (PACS 70 μ m, 100 μ m) and radio-spectral-index (α -maps using 1.49 & 8.44 GHz; Vardoulaki+15)

greater sample

- GOALS: Great Observatories All-sky LIRG Survey (Armus+09, Petric+11, Stiewalt+13, Diaz-Santos+10,11; http://goals.ipac.caltech.edu)
- 202 systems:180 LIRGs ($L_{IR} > 10^{11} L_{\odot}$) & 22 ULIRGs ($L_{IR} > 10^{12} L_{\odot}$)
- complete sample from the IRAS Revised Bright Galaxy Sample

 $(S_{60\mu m} > 5.24 \text{ Jy } \& z < 0.088)$

- full range of nuclear spectral types (type-1 and type-2 AGN, LINERs, and starbursts) and interaction stages (major mergers, minor mergers, and isolated galaxies)
- data: GALEX, Hubble, Spitzer, Herschel, Chandra, VLA, JVLA, ALMA

our sample

> 26 LIRG systems from GOALS:

- resolved at VLA B-array 1.49 GHz (~6 arcsec resolution)
- 24 µm MIPS Spitzer maps $\rightarrow q_{24}$ maps (~6 arcsec resolution)
- 70 & 100 μ m PACS Herschel maps $\rightarrow T_d$
- > 28 LIRG systems from GOALS:
 - resolved at VLA A-array 1.49 GHz (~1.5 arcsec resolution)
 - 8 µm IRAC Spitzer maps $\rightarrow q_8$ maps (~2 arcsec resolution)
 - radio-spectral-index α-maps for 16 LIRGs (Vardoulaki+15)

≥ 5 LIRG systems with resolved q_8 , q_{24} , T_d and α-maps

 12^{TH} Hel.a.s

methods

 $\succ q_8$, q_{24} maps (resolution ~ 2, 6 arcsec):

•
$$q_{8,24} = \log_{10}(f_{v8,24\mu m} (Jy) / f_{v20cm} (Jy))$$

 $\succ T_{d}(K)$:

- $f_v = N / \lambda^{\beta+3} (e^{hc/\lambda kT} 1);$ modified Planck function
- $f_{70\mu m} \& f_{100\mu m}$ Herschel PACS (resolution ~ 7 arcsec)
- χ^2 minimalization, $\beta = 2$, $10 < T_d$ (K) < 80, single component fit
- > α -maps (resolution ~ 1.5 arcsec):
 - $S_v \sim v^{-\alpha}$, 1.49 & 8.44 GHz (Vardoulaki+15)

IR/radio ratio

12TH HEL.A.S

eleniv@physics.uoc.gr; users.physics.uoc.gr/~eleniv

IR/radio ratio v scale

Radio-FIR correlation in nearby galaxies

global q_{24}

symbols:

- Ճ 137 LIRGs GOALS
- ▲ 22 mid-IR AGN
- 75 normal SINGS
- LIRGs ~ normal gals
- high q₂₄: RQ buried AGN/ hot SB
- low q_{24} : RL AGN

spatially resolved q_{24} (kpc scale)

eleniv@physics.uoc.gr; users.physics.uoc.gr/~eleniv

spatially resolved q_{24}

- q_{24} values increase from the nucleus outwards \rightarrow different scale length of 24 µm and radio
- known superwind in NGC6286 → shocked emission → dust heating without additional radio
- deficit of recent CR electron injection into the ISM in regions with high q_{24} ? (as in Murphy+06)

$T_{\rm d}$ from 70 & 100 µm

⇒ based on 70/100 colour and estimated T_d from χ^2 minimalization and single component fit for 26 LIRGs:

- warmer objects $< T_d > \sim 56 K$
- colder objects $< T_d > \sim 15 K$
- nuclear regions $< T_d > \sim 30 K$
- mean for 26 LIRGs $< T_d > \sim 30 K$
- ➤ a double component fit could improve T_d estimate in some cases, but we are limited by the resolution of our data in the radio

warm & cold dust

- the dispersion in q_{24} from LIRG to LIRG does not depend on 60/100 colour
- within LIRGs q_{24} increases with increasing 24/70 colour as expected
- no dependence to L_{TIR}

conclusions

- similar q_{24} values and spread for mid-IR AGN and SB in LIRGs
- on global scale LIRGs similar values and dispersion in q_{24} as normal galaxies
- $\hfill \hfill \hfill$
- some SBs show increase of q_{24} from the nucleus outwards warm dust in disk
- T_d from single component fit gives similar values for AGN and circumnuclear SB with mean values of ~30K
- further investigation on spatially resolved properties of ISM needed to understand in dept the variations in the mid-IR/radio ratios

spatial variations in $q_{8,24}$

