Jet formation in black-hole X-ray transients and implications

### Nick Kylafis University of Crete

with Pablo Reig

Thessaloniki, 1 July 2015

### Introduction

- In a Hardness-Luminosity Diagram, XRTs exhibit a characteristic "q"-shaped curve, sometimes called hysteresis curve (next slide).
- At the beginning and the end of the outburst, the spectrum is hard (hard state). At the peak of the outburst, the spectrum is soft (soft state).
- □ I will use GX 339-4 as the prototype.

## GX 339-4



**Spectral Hardness** 

## Similar behavior for BH, NS, WD !!!



The jet line in the Hardness-Intensity Diagram (Kording et al. 2008)



Up to recently, no **physical** interpretation had been proposed for the q-shaped curve.

The question of the counterclockwise traversal was not even asked by most people!

In a recent Paper (Kylafis & Belloni 2015), we offered a physical interpretation for the q-shaped curve.

## Assumptions in our work

We have made only two assumptions:

- During an outburst, the accretion rate as a function of time is a generic "bell-shaped curve" (next slide). This assumption is **self-evident**.
- 2. At low accretion rates the accretion flow is ADAF-like (hot, geometrically thick, optically thin). At high accretion rates the accretion disk is Shakura-Sunyaev type (cold, geometrically thin, optically thick). This has been **confirmed** by MHD simulations (Ohsuga et al. 2009).

# Accretion rate during outburst. It is the **only parameter** in our picture.



### Interpretation

I will now describe what the accretion flow looks like during the various stages of the outburst.

### From A to B and then to C



Spectral Hardness

| •   | Quiescent State         |
|-----|-------------------------|
|     | Hard State              |
|     | Hard Intermediate State |
|     | Jet Line                |
|     | Soft Intermediate state |
| • · | Soft State              |

## From C to D, to E, and then to A



**Spectral Hardness** 

| •   | Quiescent State         |
|-----|-------------------------|
|     | Hard State              |
|     | Hard Intermediate State |
|     | Jet Line                |
|     | Soft Intermediate state |
| • · | Soft State              |

What creates the hard spectrum? The jet or the ADAF?

Equally good hard X-ray model spectra are produced by jet models and by ADAF models.

Thus, we need to test the two models against other observational constraints.

## Jet model

Over the years, our group has developed a simple jet model that explains quantitatively:

□ The spectrum (Reig et al. 2003; Giannios 2005).

### Giannios (2005)



Observations and model for XTE J 1118+480



The time-lags as a function of Fourier frequency (Reig et al. 2003).

### Time lag vs Fourier frequency

# Pottschmidt et al. 2000, A&A).





The shape of the autocorrelation function (Giannios et al. 2004).

# Maccarone et al. (2000) Nowak et al. (1999)





The correlation Γ – <time lag> for Cyg X-1 (Kylafis et al. 2012).

 $\Gamma$  vs. <time lag>





 The correlation Γ – Fourier peak frequency for Cyg X-1 (Kylafis et al. 2012).

# $\Gamma$ vs. peak frequency



### New constraints

- Very recently, Altamirano & Mendez (2015) reported extremely stringent constraints from the observations of GX 339-4.
- As the source moves from the hard state to the hardintermediate one,
- The phase lags increase,
- The cutoff energy decreases,
- The photon index Γ increases.
- The models must explain them simultaneously. Our model does.

Altamirano & Mendez (2015)



### Parameters

- As the source moves from the hard to the hardintermediate state, the jet weakens and cools.
- Thus, we varied the optical depth of the jet and the Lorentz factor γ of the electrons.
- Both parameters give trends similar to the ones observed.

### Variation of $\tau$



## Variation of $\gamma$



### Variation of $\tau$ and $\gamma$ .

Not surprisingly, we can fit all three observations quantitatively very well if we assume a linear variation of τ with γ.

### Conclusions

The jet model seems to have an edge at this point.

- The supporters of the ADAF model are smart people! I am sure that they will come up with an idea, but the quantitative explanation will be difficult.
- The same model must explain ALL the correlations!
- We will see in the future which model prevails.

#### THANKS

### New constraints

- Very recently, Altamirano & Mendez (2015) reported extremely stringent constraints from the observations of GX 339-4.
- As the source moves from the hard state to the hardintermediate one,
- The phase lags increase,
- The cutoff energy decreases
- And Γ increases.
- The models must explain them simultaneously. Ours does.