The Manchester-Athens Wide-Field Camera (MAWFC): A new 30deg diameter narrow-band optical camera

Panos Boumis

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing National Observatory of Athens

12th Hellenic Astronomical Conference, Thessaloniki, 2015

The team

P. Boumis (P.I. – IAASARS) J. Meaburn (JBCA – Univ. of Manchester) C. Dickinson (JBCA – Univ. of Manchester) N. Nanouris (IAASARS) A. Chiotellis (IAASARS) A. Liakos (IAASARS) J. Font (IAASARS/IAC) **B.** Loizos (IAASARS) A. Galtress (JBCA – Univ. of Manchester)

The motivation...

The sky at high galactic latitudes is host to a wide range of extensive phenomena that emit faintly in optical lines over a range of excitations. These features remain largely unexplored for the majority of the observing programmes of the World's largest telescopes which have been concentrated on achieving high angular resolution over small fields.

•the foreground, very diffuse, line emission from the galactic plane needs accurate evaluation down to resolutions of 1 arcmin to improve the interpretation of the Cosmic Microwave Background (CMB).

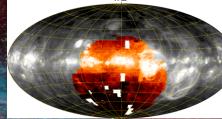
•the 100 degree long non-thermal radio spur apparently projecting from the Galactic centre. The question still remains as to whether or not this is a nearby supernova remnant or the more dramatic ejection of relativistic particles from the Galactic nucleus into the Galactic halo. Remarkably, no optical identification has yet occurred.

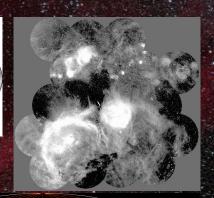
•The complexity of the nearest HII 30 degree diameter, 'bubble' in Eridanus also needs evaluating with far deeper emission line observations to distinguish between its radiatively ionized and more filamentary, collisionally ionized components. It is the extremely large angular sizes of these phenomena that inhibits their observation.

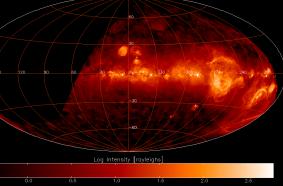
Previous Wide-Field Surveys

WHAM (Wisconsin H-Alpha Mapper) - 1995/2012

It is specialized to observe the warm ionized interstellar gas of our Galaxy. FOV=10deg, 1.6' resolution Covered the Northern Galactic plane.


VTSS (Virginia Tech Spectral-Line Survey) - 1996/2001


It is specialized to study the distribution and kinematics of diffuse, ionized gas in the Milky Way. FOV=1deg, 8-12km/s resolution spatially beam of the sky. Higher sensitivity, lower angular resolution than SHASSA.


SHASSA (Southern H-Alpha Sky Survey Atlas - 2000/2003

It is specialized to observe the warm ionized interstellar gas of our Galaxy. FOV=13deg, 0.8' resolution [0.6m telescope]

IPHAS - 2003/08 • VPHAS - 2011 [Photometric Ha Surveys] Both specialized to observe emission line objects (WR, OB stars etc.) IPHAS – at 2.5m INT Northern (La Palma), Hα, r, i down to 20mag FOV=0.3deg, 0.33" resolution VPHAS – at 2.6m VST South (Paranal), u,g,r,I,Hα FOV=1deg, 0.21" resolution(32 x 2kx4k ccd - OmegaCam)

The past.....

1st version - Wide Field Filter Camera (WFFC) -1977
 Johnson, Kaye, Meaburn, 1978, Applied Optics, 17, 442
 32 deg, narrowband filters, ipcs camera, 8' resolution

2nd version – Manchester Wide Field Camera (MWFC) -1996 Boumis et al. 2001, MNRAS, 320, 61

21x30 deg, narrowband filters, LN ccd camera, ~3.3' resolution

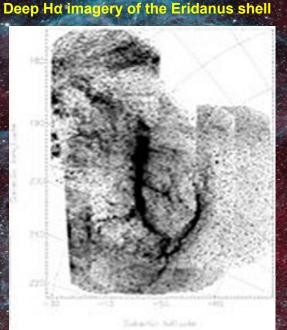
3rd version – Manchester Wide Field Camera (MWFC) -200

Dickinson 2002, PhD thesis

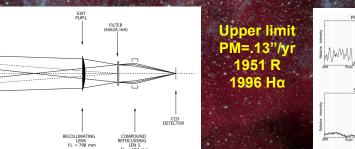
~32 deg, narrowband filters, Apogee ccd camera, ~7' resolution

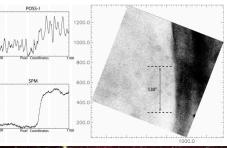
Manchester Wide Field Camera

2nd version -1996

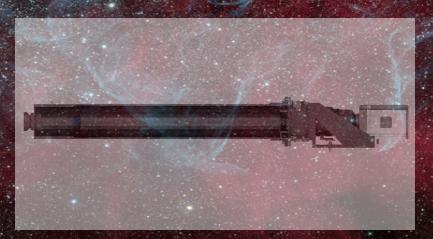

Boumis et al. 2001, MNRAS, 320, 61

21x30 deg, narrowband filters, ccd camera, ~3.3' resolution


It is concluded that these filamentary arcs are the superimposed images of separate shells (driven by supernova explosions and/or stellar winds) rather than the edges of a single superbubble' stretching from Barnard's Arc (and the Orion Nebula) to these high galactic latitudes.


AERO-EKTAR

FIELD LENS


Deep Hα imagery of the Orion Nebula

The proposed project was to design and construct a state-of-the-art, wide-field (~30 degree diameter), narrow-band, optical filter camera – The `Manchester-Athens Wide Field Camera' (MAWFC).

- The standalone camera is the first scientific instrument for astronomy that was constructed and tested completely in Greece
- We will conduct a large-area sky survey that will provide maps at less than 1 arcmin resolution, in order to investigate the very extensive, but faint, line emission regions over the whole sky.
- We will make deep observations of the northern sky in the optical emission lines of H α , [O III] and H β , from astronomical sites. The successful outcome will have a significant impact on topical astronomical areas of research

Observational technical information:

- Over a period of ~7 to 8 months, using dark time to minimize background contributions (2 weeks/month), we will make deep observations of the northern-sky.
- With a FOV of ~30-degree diameter, we can cover the northern hemisphere with ~75 individual pointings, with adequate overlap between fields for calibration of baselines.
 - For each pointing, we will require at least ~10 of 20 min exposures to provide deep (\geq 3 hour) observations using narrow-band (~10-20 A) H α , H β and [O III] filters, and shorter observations in continuum bands (~100 Å wide) to remove stellar contamination. The total integration time required is ~700 hours, which should be readily achieved on a timescale of ~7 to 8 months.

Analysis information:

- We will use the ratio of Hα and Hβ brightnesses to estimate the dust extinction at Hα (see e.g. <u>Casassus et al. 2004</u>)
- Absolute calibration will be achieved using standard nebular sources (e.g. the California nebula) or via the publically available Wisconsin H-Alpha Mapper (WHAM) Fabry-Perot data on large angular scales (<u>Haffner et al. 2003</u>).
- The images will then be combined, with appropriate background corrections, to make a large mosaic map. Combining this with other surveys (WHAM and SHASSA) will allow an accurate full-sky map of Hα, with an angular resolution of ~1 arcmin. This will be complementary to high-resolution Galactic plane surveys in Hα such as the IPHASS/VPHAS surveys, and will become a Legacy Survey to be used for many years to come for studying diffuse Galactic emission (e.g. Dobler Drane & Enkbeiner, 2009).
- The calibrated sky maps will be made publically available.

A possible future extension to the survey would be to map other lines (e.g. [S II] etc.) or to map the Southern sky with particular emphasis on the environment of the Magellanic Clouds.

Commissioning Plan

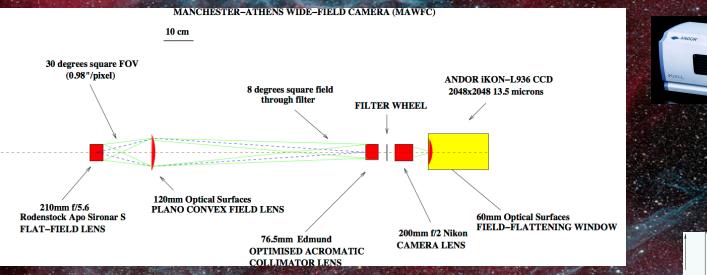
2014 March: Starting Point (17 months instead of 26 - 312.000 EUR)

• 2014 March - August Personnel hired (3 postdocs, 1 IT technician), Optical design, equipment decided – quotation & orders. Scientific studies & starting Pipeline development.

2014 August – 2015 February: Mechanical design, equipment quotations, orders & deliveries. Tests the equipment in the Optical lab and Pipeline development.

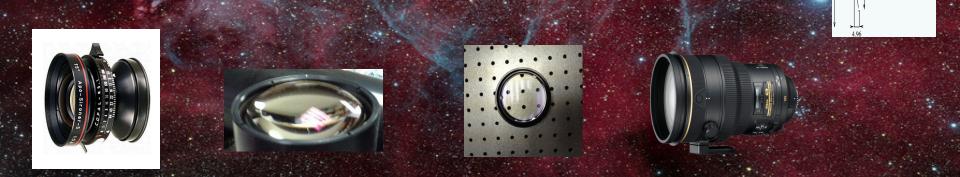
•2015 January – March: Manufacture of all mechanical parts, equipment delivery and tests in the optical lab. Pipeline development.

•2015 April-May: Commissioning of MAWFC in the optical lab, testing period in Penteli hill – First light on sky (1st of April).


•2015 June-October: Commissioning of MAWFC at Krioneri Observatory, tests on sky, starting observations campaign and data analysis. Finalize Pipeline and present first results.

4th version -2015

Boumis et al. 2015, MNRAS, in prep.

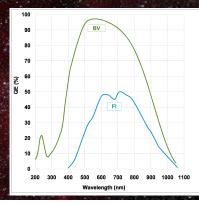

30 deg, narrowband filters, ccd camera, ~1' resolution

Optical layout / design (2014 March – August)

concave spherical radius 81

41.5 CCD

Testing in the Optical lab (Aug 2014 - Feb 2015)


Guiding telescope Skywatcher ED80 (f/7.5) Guiding ccd Starlight Superstar (1.4kx1.0k, 4.65µm QE~50%) Equat. Mount: Paramount ME II

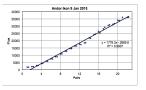
Testing in the Optical lab (Aug 2014 - Feb 2015)

Andor iKon-L ccd 2k x 2k, 13.5µm -100 C Peltier cooler QE > 90%

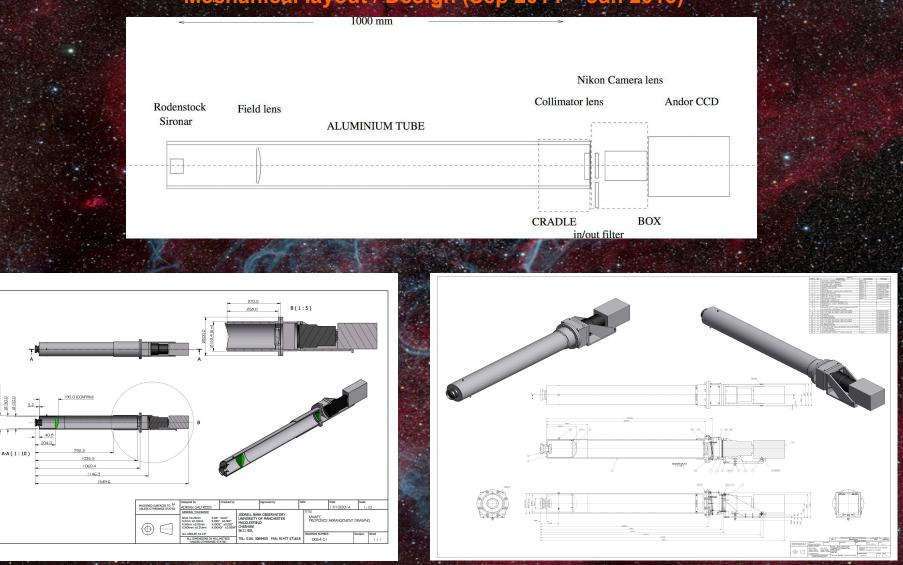
	A DOT DE REAL OF A DE REAL		100 C 100 C 100 C	1.00		and the second second
	it bias_∗.fits					flat
bias_01.	fits,DATE = 201 fits,DATE = 201	5-01-09T16:	18:42			31894
bias 03.	fits,DATE = 201	5-01-09T16:	18:53			ecl>
bias_04.	fits,DATE = 201	5-01-09T16:	18:56			ecl>
	fits,DATE = 201					bias_ bias_
bias_06.	fits,DATE = 201 fits,DATE = 201	5-01-09T16:	19:03			bias_
bias_07.	fits,DATE = 201	5-01-09116: 5-01-09T16:	19:07			bias_
bias 09.	fits,DATE = 201	5-01-09T16:	19:14			bias_
bias_10.	fits,DATE = 201	5-01-09T16:	19:17			bias_
	fits,DATE = 201	5-01-09T16:	19:21			bias_ bias_
ecl> 1ms # MAX	tat bias∗ IMAGE	NPIX	MEAN	STDDEV	MIN	bias_ bias_
1448.	bias_01.fits	4194304	1361.	5.386	1246.	ecl> :
1388.	bias_02.fits	4194304	1361.	5,339	1333.	# MAX
1448.	bias_03.fits	4194304	1361.	5.356	1248.	1390.
1392.	bias_04.fits	4194304 4194304	1361. 1361.	5.362	1325. 1332.	1388.
1388.	bias_05.fits bias_06.fits	4194304	1361.	5.361	1255.	1391.
1515.	5145_0011105	1151501	15011	51501	12551	2273.
1388.	bias_07.fits	4194304	1361.	5,353	1334.	1391.
1387.	bias_08.fits	4194304	1361.	5.338	1333.	1473.
1502.	bias_09.fits	4194304	1361. 1361.	5.359	1276.	1390.
1390.	bias_10.fits bias_11.fits	4194304 4194304	1361.	5.383	1334.	1388.
1389.	0105_11.1105	4194304	1301.	2.339	1551.	1388.
	it dark_* 'expo					1391.
	fits,EXPOSURE = fits,EXPOSURE =					Stati
	fits,EXPOSURE =					51811
	fits, EXPOSURE =					ecl> :
	fits, EXPOSURE =					#
	<pre>fits,EXPOSURE = fits,EXPOSURE =</pre>					MIN flat:
for_trac	e_dark.fits,EXP e light.fits,EXP	OSURE = 300				1031.
-	- •					# MIN
ect> 1MS #	tat dark∗ IMAGE	NPIX	MEAN	STDDEV	MIN	ecl>
"АХ						flat
1466.	dark_01.fits	4194304	1361.	5.367	1188.	1031. ecl>

flat22b 31894,	.fits[850:1349, 42151,	50:449]	200000	36192,	3801,
ecl> ecl>hedit bias.fits 'date'. bias_01.fits,DATE 2015-01-0917:11:53 bias_02.fits,DATE 2015-01-0917:11:53 bias_04.fits,DATE 2015-01-0917:11:58 bias_04.fits,DATE 2015-01-0917:12:19 bias_05.fits,DATE 2015-01-09171:12:10 bias_05.fits,DATE 2015-01-09171:12:19 bias_07.fits,DATE 2015-01-09171:12:20 bias_08.fits,DATE 2015-01-09171:12:26 bias_08.fits,DATE 2015-01-09171:12:36					
ecl> ims # MAX	tat bias* IMAGE	NPIX	MEAN	STDDEV	MIN
	bias_01.fits	4194304	1362.	5.333	1337.
1390.	bias_02.fits	4194304	1362.	5.335	1334.
1388.	bias_03.fits	4194304	1362.	5.367	1336.
1391.	bias 04.fits	4194304	1362.	5.385	1334.
2273.	- bias_05.fits	4194304	1362.	5.372	1337.
1391.	bias 06.fits	4194304	1362.	5.329	1270.
1473.	-				
1390.	bias_07.fits	4194304	1362.	5.305	1335.
1388.	bias_08.fits	4194304	1361.	5.371	1335.
1388.	bias_09.fits	4194304	1361.	5.36	1333.
1391.	bias_10.fits	4194304	1362.	5.339	1334.
Statistics BAD column 1516 and adjacent columns					
ecl> ims # MTN	tat flat10a.fit IMAGE MAX	ts[1516:1516	,1567:196 NPI		STDDEV
	MAX fits[1516:1516 9024.	5,1567:1966]	40	0 3387.	507.2

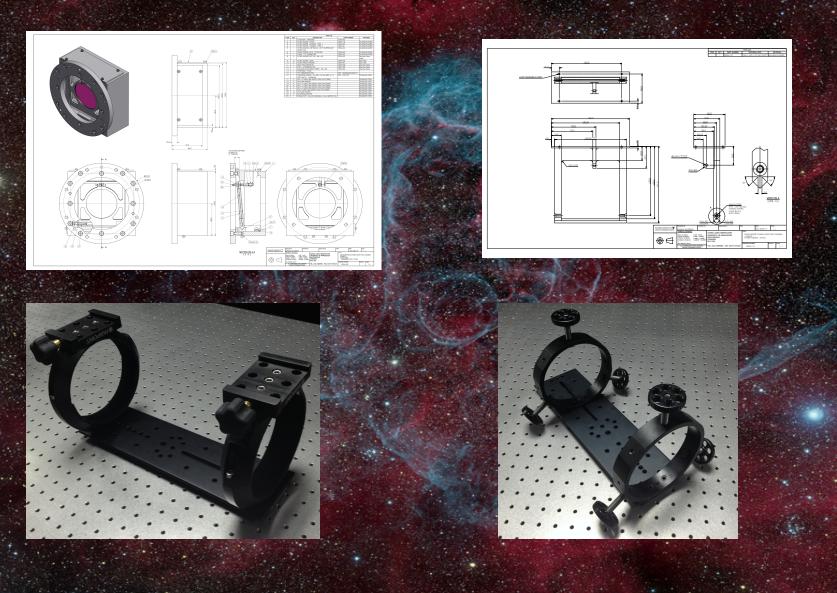
t10a.fits[1516:1516,1567:1966] . 9024.	400	3387.	507.2	
IMAGE	NPIX	MEAN	STDDEV	
MAX imstat flat10a.fits[1516:1516,1! t10a.fits[1516:1516.1567:1666]	567:1666] 100	2885.	737.4	
. 9024. imstat flat10a.fits[1514:1515.1		2003.	/3/.4	

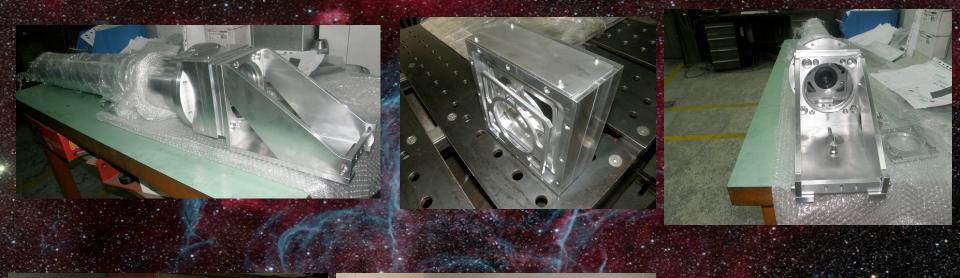

flat10a.fits[1514:1515,1567:1666] 11271. 11814.	200	11580.	120.3
ecl> imstat flat10a.fits[1517:1517,1567 flat10a.fits[1517:1517,1567:1666]	1666] (1666) 100	11943.	134.1
11692. 12416. ecl> imstat flat10a.fits[1518:1519,1567			
flat10a.fits[1518:1519,1567:1666] 11256. 11855.	200	11563.	126.3
ecl>			
ecl> imstat flat10a.fits[1514:1515,1667			
# IMAGE	NPIX	MEAN	STDDEV
MIN MAX			
flat10a.fits[1514:1515,1667:1766]	200	11255.	119.5
10934. 11526.			
ecl> imstat flat10a.fits[1516:1516,1667			
flat10a.fits[1516:1516,1667:1766] 3121. 3441.	100	3291.	87.21
ecl> imstat flat10a.fits[1517:1517,1667	1766]		
flat10a.fits[1517:1517,1667:1766] 11331. 11905.	100	11584.	122.4
ecl> imstat flat10a.fits[1518:1519,1667	17661		
flat10a.fits[1518:1519,1667:1766]	200	11227.	110.9
10984. 11542.			
Line 1539			
 ecl> imstat flat10a.fits[1250:1649,1537	.15201		
ECt> 105tat (tat100.11t5(1250.1049,155/	.1330]		CTODELL

#	IMAGE	NPIX	MEAN	STDDE
MIN	MAX			
flat10	a.fits[1250:1649,1537:1538]	800	11915.	148.
11485.	12279.			
ecl> im	stat flat10a.fits[1250:1649,15	39:1539]		
flat10	a.fits[1250:1649,1539:1539]	400	11669.	133.
11302.	11983.			
ecl> im	stat flat10a.fits[1250:1649,15	40:1541]		
flat10	a.fits[1250:1649,1540:1541]	800	11924.	146.
11521.	12270.			

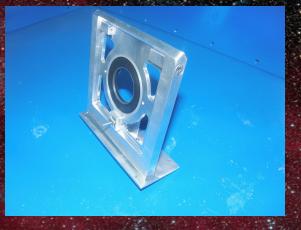

RATIO MEAN(flat10a.fits[1250:1649,1539:1539]) / MEAN(flat10a.fits[1250:1649,1540:1541]) 11669 / 11924 ~ 0.98

Line 1027				
ecl> imstat	flat10a.fits[1250:1649.102	25:10261		
#	IMAGE	NPIX	MEAN	STDDEV
MIN N	IAX			
flat10a.fi	ts[1250:1649,1025:1026]	800	13320.	199.5
12812. 1	3813.			
	flat10a.fits[1250:1649,102	27:1027]		
flat10a.fi	ts[1250:1649,1027:1027]	400	13012.	184.1
	3434.			
ecl> imstat	flat10a.fits[1250:1649,102	28:1029]		
flat10a.fi	ts[1250:1649,1028:1029]	800	13314.	194.8




Mechanical layout / Design (Sep 2014 - Jan 2015)

Mechanical Design / Parts (Sep 2014 - Jan 2015)



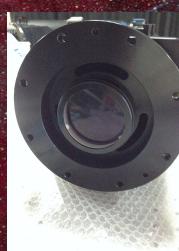
Mechanical manufacturing (Jan – Mar 2015)

Mechanical laboratory – University of Patras (MYEDPP)

Mechanical manufacturing (Jan – Mar 2015)

MAWFC completed in the mechanical lab. Acceptance tests performed successfully

Mechanical laboratory – University of Patras (MYEDPP)


MAWFC in the Optical lab (Mar 2015)

Optical tests / Alignments

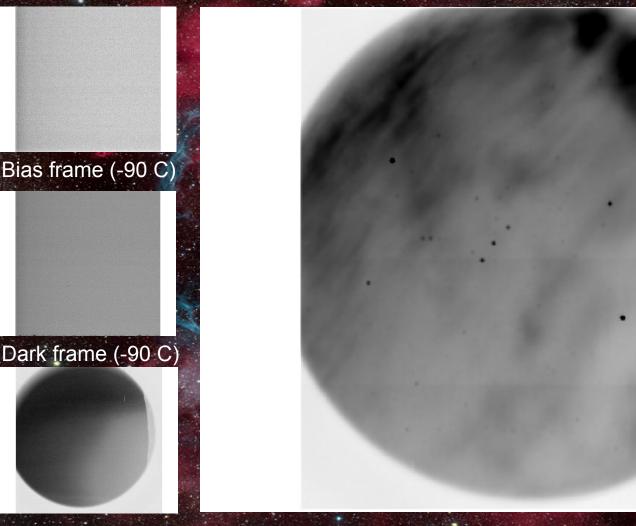
Mechanical 3D layout



Mechanical 3D layout

Optical lenses:

- 210mm f/5.6 Flat-field lens
- 120mm plano-convex field lens
- 76.5mm collimator lens
- 200mm f/2 camera lens
- 60mm field-flattening window lens

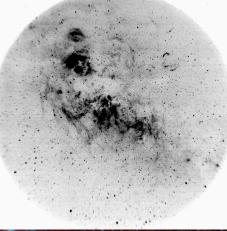

First light on sky tests (1st April 2015)

IAASARS head-quarters in Penteli hill

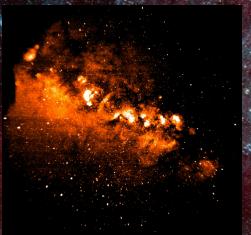
First light on sky tests (1st April 2015)


IAASARS head-quarters in Penteli hill

First light image in Orion without a filter


Optics tests

First light on sky tests at Kryoneri Observatory (12th June 2015)



First light on sky tests at Kryoneri Observatory (12th June 2015)

First light Hα image in Cygnus – 20min

First light Hα image in Smith Neb – 20min First light [O III] image in Cygnus – 20min

MAWFC web page:

http://mawfc.astro.noa.gr

MAWFC pipeline:

INSTITUTE FOR ASTRONOMY, ASTROPHYSICS, SPACE APPLICATIONS & REMOTE SENSING

IAASARS

Welcome to MAWFC website

GALLERY

MOSAIC

camera (1996)

Deep, mosaic Hg image of the high

Galactic latitude Eridanus shells

LATEST NEWS

1

rformed successfully. 18

Patras (MYEDPP). inical design of MAWFC at JBCA/University of Manch

PREVIOUS VERSIONS

Photo of the Manchester Wide-Field Camera on the 1.2m Kryonerion telescope in Greece (circa 1995)

Photo of the Manchester Wide-Field Camera, being tested i the Lab at IBCA/Manchester (circa 2001)

PREVIOUS VERSIONS

made with this early version of the

ORION NEBULA Deep, Hg image of the Orion Nebula taken with an earlie version camera

Pipeline Manual for Manchester-Athens Wide-Field Camera (MAWFC)



April, 2015 Version 4

Co-financed by Greece and the European Union

IAASARS National Observatory of Athens I. Metaxa & Vas. Pavlou St., GR-15236, Penteli, Greece +30 210 8109162

SVPERNOVA REMNANTS AN ODYSSEY IN SPACE AFTER STELLAR DEATH 6 - 11 JUNE 2016, CHANIA, CRETE, GREECE

Scientific Topics

- Radiation studies from gamma-rays to radio in Galactic and Extragalactic SNRs
- The search for the binary companions of SN progenitors in SNRs in the Milky Way and Local Group
- Pulsar winds nebulae (including Crab flares)
- Magnetic fields in SNRs and PWNe
- Collisionless shock waves in SNRs
- Jets in SNRs

MARK & DOR

- SNRs as probes and drivers of galaxy structure
- SNe and SNRs cosmic ray acceleration
- SN ejecta abundances, clumpiness

SNe and SNRs with circumstellar interactions

Scientific Organizing Committee (SOC)

P. Boumis (Greece, co-chair), J. Raymond (USA, co-chair), T. Bell (UK), W. Blair (USA), K. Borkowski (USA), A. Decourchelle (France), R. Fesen (USA), D. Green (UK), R. Kothes (Canada), A. Rest (USA), P. Slane (USA)

Local Organizing Committee (LOC)

P. Boumis (Greece, co-chair), A. Bonanos (Greece, co-chair), D. Abartzi (Greece), S. Akras (Brazil), J. Alikakos (Greece), A. Chiotellis (Greece), M. Kopsacheili (Greece) M. Kourniotis (Greece), I. Leonidaki (Greece), M. Pliatsika (Greece), S. Williams (Greece)

http://snr2016.astro.noa.gr