Identification of red supergiants in the Local Group with mid-IR photometry

> Nikolay Britavskiy NOA supervisor: Dr. Alceste Bonanos

UoA supervisor: Assoc. Prof. Despina Hatzidimitriou





Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης



# Motivation: "Mind the Gap"



#### Our goals:

- Increase the statistics of spectroscopically confirmed dusty massive stars in the Local Group.
- Revise the selection criteria for such objects.
- Get the physical parameters of newly identified RSGs.

#### Our tools:

- Spitzer archival data.
- Roadmap of Bonanos et al. (2009, 2010)
- A bit of luck to get time on ESO/VLT and GTC telescopes.







[3.6]-[4.5] (mag)

# **Selection criteria**

Spectroscopically confirmed population of massive stars in the LMC and SMC (Bonanos et al. 2009, 2010)





## **Selection criteria**

M<sub>3.6</sub> < -9 mag. RSGs: J-[3.6] > 1 and [3.6] - [4.5] < 0 LBVs: [3.6] - [4.5] > 0.15





# **Program galaxies**

7 dlrr galaxies (13 in total) in the Local Group with high star formation rate:

Pegasus
Phoenix
Sextans A
Sextans B
WLM
IC 10
IC 1613



# **Program galaxies**

7 dlrr galaxies in the Local Group with high star formation rate:

Number of targets:

| <ul> <li>Pegasus</li> </ul> | 19 |
|-----------------------------|----|
| <ul> <li>Phoenix</li> </ul> | 14 |
| •Sextans A                  | 15 |
| •Sextans B                  | 5  |
| •WLM                        | 31 |
| •IC 10                      | 12 |
| •IC 1613                    | 8  |





## **Observations**

Longslit and multi-object spectroscopy modes on:

•GTC - OSIRIS (2014B observed semester, 10.6h)
•Du Pont – WFCCD (private communication, J. Prieto)
•ESO/VLT - FORS2 (P90/P91 observed semesters, 11h + 3.4h)

Resolution  $R \le 1000$ Signal-to-Noise up to 60

# **Spectral analysis**

- Radial velocity <- Cross correlation of Ca II triplet
- Spectral type <- Fitting of TiO bands
- Luminosity class <- Fitting of Ca II triplet

## **Spectral analysis**



## An example of the stellar population Zoo



#### An example of the stellar population Zoo



## An example of the stellar population Zoo



# **Target classification**

| ID        | All observed    | Unclassified  | Spectral type  | Giants        | RSGs          | Em. line | Background | Carbon stars |
|-----------|-----------------|---------------|----------------|---------------|---------------|----------|------------|--------------|
|           | targets         |               | only           |               |               | objects  | objects    |              |
| Pegasus   | 11 (+8)         | <b>2</b> (+7) | 3              | 4             | 2             | 0        | 0          | (+1)         |
| Phoenix   | <b>2</b> (+12)  | 0 (+5)        | <b>2</b> (+2)  | 0 (+2)        | <b>0</b> (+1) | 0        | 0          | (+2)         |
| Sextans A | 15              | 5             | 2              | 1             | 7             | 0        | 0          | (0)          |
| WLM       | 15 (+16)        | 5 (+8)        | <b>3</b> (+1)  | <b>0</b> (+1) | 4             | 2        | 1 (+1)     | (+5)         |
| IC 10     | 12              | 0             | 0              | 6             | 6             | 0        | 0          | 0            |
| IC 1613   | 8               | 3             | 2              | 0             | 3             | 0        | 0          | 0            |
| Sextans B | 5               | 0             | 0              | 3             | 2             | 0        | 0          | 0            |
| Total     | <b>68</b> (+36) | 15 (+20)      | <b>12</b> (+3) | 14 (+3)       | 24 (+1)       | 2        | 1 (+1)     | (+8)         |
| %         | 100             | 22            | 18             | 21            | 35            | 3        | 1          | -            |

# **Target classification**

| ID        | All observed    | Unclassified  | Spectral type  | Giants        | RSGs          | Em. line | Background    | Carbon stars |
|-----------|-----------------|---------------|----------------|---------------|---------------|----------|---------------|--------------|
|           | targets         |               | only           |               |               | objects  | objects       |              |
| Pegasus   | 11 (+8)         | <b>2</b> (+7) | 3              | 4             | 2             | 0        | 0             | (+1)         |
| Phoenix   | <b>2</b> (+12)  | <b>0</b> (+5) | <b>2</b> (+2)  | 0 (+2)        | <b>0</b> (+1) | 0        | 0             | (+2)         |
| Sextans A | 15              | 5             | 2              | 1             | 7             | 0        | 0             | (0)          |
| WLM       | <b>15</b> (+16) | 5 (+8)        | <b>3</b> (+1)  | <b>0</b> (+1) | 4             | 2        | <b>1</b> (+1) | (+5)         |
| IC 10     | 12              | 0             | 0              | 6             | 6             | 0        | 0             | 0            |
| IC 1613   | 8               | 3             | 2              | 0             | 3             | 0        | 0             | 0            |
| Sextans B | 5               | 0             | 0              | 3             | 2             | 0        | 0             | 0            |
| Total     | <b>68</b> (+36) | 15 (+20)      | <b>12</b> (+3) | 14 (+3)       | 24 (+1)       | 2        | 1 (+1)        | (+8)         |
| %         | 100             | 22            | 18             | 21            | 35            | 3        | 1             | _            |

#### Spectroscopically confirmed RSGs in the Local Group\*



\* Warning! Excluding M31, M33, SMC and LMC.

#### Spectroscopically confirmed RSGs in the Local Group\*



\* Warning! Excluding M31, M33, SMC and LMC.

#### Spectroscopically confirmed RSGs in the Local Group\*



\* Warning! Excluding M31, M33, SMC and LMC.

## Future perspectives:

- Get the physical parameters of newly identified RSGs, such as: Radius, effective temperature, gravity, metallicity ...
- 2. Compare their position on the H-R diagram with evolutionary models.
- Complete the census of RSGs in the star forming dIrrs in the Local Group (we expect to receive more VLT/FORS2 spectra from WLM during the P95 semester).



2.

3. (

## Results

# 1. We identified 25 RSGs and 2 emission line objects in 7 star-forming dlrrs galaxies in the Local Group.

This work increased the sample of spectroscopically confirmed RSGs in dIrr galaxies in the Local Group by 21 (47 %). Prior to these works, there where 44 RSGs spectroscopically confirmed in dIrrs of the Local Group: 33 RSGs were known in NGC 6822 and 11 RSGs were known in WLM.

- 2. We performed the revision of optical and mid-IR selections criteria for RSGs.
- 3. We demonstrated the algorithm of how to use the IR survey for a searching of dusty massive stars in the Local Group...

## Results

# 1. We identified 25 RSGs and 2 emission line objects in 7 star-forming dlrrs galaxies in the Local Group.

This work increased the sample of spectroscopically confirmed RSGs in dIrr galaxies in the Local Group by 21 (47 %). Prior to these works, there where 44 RSGs spectroscopically confirmed in dIrrs of the Local Group: 33 RSGs were known in NGC 6822 and 11 RSGs were known in WLM.

- 2. We performed the revision of optical and mid-IR selections criteria for RSGs.
- 3. We demonstrated the algorithm of how to use the IR survey for a searching of dusty massive stars in the Local Group...

# This work is published in:

1. Britavskiy et al. <u>2014A&A...562A..75B</u>

Identification of red supergiants in nearby galaxies with mid-IR photometry.

2. Britavskiy et al. <u>A&A</u>, submitted on April 2015

Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry.

# ευχαριστώ πολύ