Twin binaries as a laboratory for testing winddriven mass loss theories

<u>Nikolaos Nanouris⁽¹⁾</u> Anastasios Kalimeris⁽²⁾ Alexandros Chiotellis⁽¹⁾ Panayotis Boumis ⁽¹⁾

- ⁽¹⁾ National Observatory of Athens
- ⁽²⁾ Technological & Educational Institute of Ionian Islands

The 12th Hellenic Astronomical Conference 28 June - 02 July 2015, Thessaloniki

Eclipsing Binaries

Accurate determination of orbital / physical parameters:

P, *i*, *q*, *T*, *L*, *M*, R, **log***g*

Light Curve

R. Velocities Curve

RT And (Pribulla et al. 2000)

Roche geometry - Classification -

Roche lobes: inner equipotential surface

Lagrangian points: lowest potential barriers

L1: mass transfer L2: mass loss (donor, the more massive) L3: mass loss (donor, the less massive)

O-C diagrams (Eclipse Timing Variations)

Physical mechanisms for detached systems

- Wind-driven mass loss (P \uparrow).
- Magnetic braking (P \downarrow).
- Gravitational radiation (P \downarrow).
- Tidal interaction $(P \downarrow \uparrow)$.

$$\dot{\mathbf{J}}_{\text{orb}} = \dot{\mathbf{J}} - \dot{\mathbf{J}}_1 - \dot{\mathbf{J}}_2$$

$$J_{orb} = \frac{M_1 M_2 G^{2/3}}{(2\pi)^{1/3} (M_1 + M_2)^{1/3}} P^{1/3}$$

Wind-driven mass loss

• Tidal enhancement in close binaries as the stellar radius approaches the Roche lobe radius.

Magnetic braking

ETV diagrams traceability: Wind-driven mass loss

Nanouris et al. (2011, A&A)

ETV diagrams traceability: Magnetic braking (fast rotators)

Nanouris et al. (2011, A&A)

ETV diagrams traceability: Gravitational radiation

Nanouris et al. (2015, A&A)

Synthetic ETV diagrams: Mass loss vs. magnetic braking

Twin binaries: Setting criteria

- Main-sequence stars.
- Late-type stars.
- Detached binary systems.
- Short-period systems.
- Twin binaries: components of similar parameters.
- Spin-orbit synchronization.
- Circulized orbits.
- Long observed orbital history.

Why?

- Well-examined properties.
- Eliminating the driving mechanisms: wind-driven mass loss & magnetic braking only
- Eliminating the number of parameters: exactly halved.

Twin binaries: Seeking for a sample

- The mass loss rate was left as the only unknown parameter.
- The inferred mass loss rates are compared with the theoretical ones.

$$\dot{M}_{w} \approx -\frac{M_{1} + M_{2}}{5} \cdot \left[\frac{2c_{2}}{P_{e}^{2}} + bP_{e}^{-\left(a + \frac{1}{3}\right)}\right]$$
$$b = b(a, K_{kaw}, M, R)$$

- Seven systems were found (UV Leo, ER Vul, YY Gem, CV Boo, DU Leo, HS Hya, WZ Oph).
- Most of them belong to the RS CVn-type group.

Observed vs. theoretical mass loss rates

Nanouris, Ph.D. Thesis (2011)

Impact on the type Ia SNe evolutionary scenarios

• The origin of type Ia SNe is still purely known (single/double degenerate scenario).

• The proposed wind-driven mass loss scheme could be employed in population synthesis codes in order to better reproduce the observed generation rates.

• Nova-like variables with less massive white dwarf than might be also progenitors.

Concluding remarks

• Both wind-driven mass loss and magnetic braking are competitive mechanisms for driving the observed orbital evolution of close binaries.

• A rotationally- and tidally-enhanced wind-driven mass loss scheme is consistent with the observed rates as inferred from the ETV analysis of twin binaries.

• The proposed scheme might have a significant impact on the single degenerate scenario of type-Ia SNe by potentially increasing the number (and/or the class) of their progenitors.

• A larger sample is needed for decisive conclusions !

Thank you !

Synthetic O-C diagrams: Methodology

Step 1: $\mathbf{P} = \mathbf{P}(\mathbf{t})$ determination from a $\dot{J} - \dot{m} - \dot{P}$ equation (e.g. Kruszewski 1964, Tout & Hall 1991, Kalimeris & Rovithis-Livaniou 2006)

Step 5 (extra): detectability range for a given noise level \mathcal{E} : $\Delta T(\tilde{E}) = \mathcal{E} \Rightarrow t(\tilde{E}_{\min})-T_0$