UCL Atmospheric composition of

transiting extrasolar planets

with HST/WFC3 spatial scanning

Angelos Tsiaras <u>Supervisors:</u> Giovanna Tinetti Ingo Waldmann

12th Hellenic Astronomical Conference Thessaloniki, 2nd July 2015

Detection overview

Composition

Composition

Mass and Radius of Kepler-138 Planets

Mass Relative to Earth

Conditions on exoplanets

- Density alone does not fully characterise a planet.
- Atmosphere is the one, key component, that affects mostly the conditions on a planet (Earth - Venus).
- We need spectroscopy of to constrain molecular abundances in the exoplanetary atmospheres.

Emission spectrum

Emission spectrum

Transmission spectrum

HD 209458b from 290-1030 nm (Knutson et al. 2007)

Transmission spectrum

Observational requirements

- Precision of ~ 10^{-4}
- High SNR
 - Bright star
 - Large planet
 - Hot planet
- Infrared spectrometer:
 - More absorption lines from molecules
 - Low Rayleigh scattering
 - Less stellar activity
- Large wavelength range
- Reliable IR detectors

HD209458b - emission

HD189733b - transmission

Atmospheric characterisation process

HST Spatial scanning

Instrumental systematics

GJ1214b - transmission

HD97658b - transmission

De-trending techniques

Supervised learning

- E.g. gaussian processes, neural networks.
- No functional form for the instrument systematics.
- Requires information about the instrument to learn the data properties.

Unsupervised learning

• No prior knowledge.

Independent Component Analysis

Independent Component Analysis

$$\begin{aligned} x_{\lambda_1} &= A_{11}s_1 + A_{12}s_2 + A_{13}s_3 \\ x_{\lambda_2} &= A_{21}s_1 + A_{22}s_2 + A_{23}s_3 \\ x_{\lambda_3} &= A_{31}s_1 + A_{32}s_2 + A_{33}s_3 \end{aligned}$$

Spitzer/IRAC observations at 3.6 mm of GJ436b

Raw lightcurves

Detrended lightcurves + models

Morello et al. 2015, ApJ, 802, 117

Atmospheric Remote-sensing Infrared Exoplanet Large-survey

ARIEL – Example spectrum

