13th Hel.A.S Conference Heraklion, 2-6 July, 2017 POSTER

Gravitational quantization of exoplanet orbits: The system TRAPPIST-1

 $V. \ S. \ Geroyannis$ Department of Physics, University of Patras

Abstract: We apply the so-called "global polytropic model" to the numerical study of the exoplanetary system TRAPPIST-1. We compare the computed exoplanet distances from their host star with corresponding observations, and quote certain orbit predictions given by the model.

Keywords: exoplanets; global polytropic model; quantized orbits; stars: individual (TRAPPIST-1)

1 Introduction

We study numerically the exoplanetary system TRAPPIST-1. This work is continuation of three previous papers regarding exoplanet systems ([1], [2], [3]); we shall not repeat here issues developed in these papers. A detailed account of the so-called "global polytropic model" can be found in [1] (Secs. 2, 3, and references therein).

2 Numerical Results

Results for the 7-planet TRAPPIST-1 system ([4], [5], [6], [7]) are shown in Table 1. The first root ξ_1 of the Lane-Emden function θ , coinciding with the radius of the host star, is expressed in both "classical polytropic units" (cpu) — in such units, the length unit is equal to the polytropic parameter α ([8], Eq. (3b)) — and solar radii R_{\odot} . All other orbit radii are expressed in AU.

The minimum sum of absolute percent errors is found to be

$$\Delta_{\min} \left(n_{\text{opt}}(\text{TRAPPIST-1}) = 2.525; q_{\text{b}} = 6, q_{\text{c}} = 7, q_{\text{d}} = 8, \\ q_{\text{e}} = 9, q_{\text{f}} = 10, q_{\text{g}} = 11, q_{\text{h}} = 13 \right) \simeq 44.2.$$
(1)

It is worth clarifying here that the term "error" is used with the meaning of the deviation (the difference) of a computed value with respect to its corresponding observed value, and does not reflect any errors owing to the numerical methods used; the latter ones are very small in all computations of the present study.

The optimum polytropic index $n_{opt} = 2.525$ for the star TRAPPIST-1 is close to the values n_{opt} (Kepler-32) = 2.608 ([3], Sec. 3, Eq. (2), Table 2) and n_{opt} (Kepler-186) = 2.530 ([3], Sec. 6, Eq. (5), Table 5). Note that both stars Kepler-32 and Kepler-186 have spectral type 'M', i.e. same to that of the star TRAPPIST-1.

The distance having the smaller error relative to its observed value, $\simeq 0.4\%$, is that of the planet e, while the larger error appears in the distance of the innermost planet b, $\simeq 14.7\%$. The average error for the computed orbit radii of the 7 planets relative to their corresponding observed orbits is $\simeq 6.3\%$.

Regarding the large error appearing in the distance of the innermost planet b, it may be due to its close proximity to the star TRAPPIST-1. Similar large errors have been also found for the innermost planet b of the exoplanetary system HD 10180, $\sim 44\%$ ([3], Sec. 2, Table 1), and for the innermost

planet e of the exoplanetary system 55Cnc, ~ 32% ([1], Sec. 4, Table 1). It is worth emphasizing here that b is the closest planet to its host star, $\alpha_{\rm b} = 1.111 \times 10^{-2}$ AU, among all exoplanetary systems studied in [1], [2], and [3]. We conjecture that, forced by the host star, the planet b has been eventually expelled to an orbit close to the "right average-density orbit" (abbreviated "Right ADO"; [2], Sec. 2; also [3], Sec. 2) within the polytropic shell #6, $\alpha_{\rm R6} = 1.072 \times 10^{-2}$ AU. If so, then the deviation of $\alpha_{\rm R6}$ from the observed b's distance drops to $\simeq 3.5\%$.

3 Some Predictions

Regardind the large error involved in the orbit radius of the planet d, an interesting conjecture — made firstly for the planet f of the exoplanetary system HD 40307 ([2], Eq. (2) and Sec. 3.1; in Sec. 2 of [3] we have used the abbreviations "LADC" and "RADC" for the "left average-density orbit conjecture" and the "right average-density orbit conjecture", respectively) — is to associate this distance with the "left average-density orbit" (abbreviated "Left ADO") $\alpha_{L8} \simeq 0.022$ AU, provided that the maximum-density orbit α_8 of the polytropic shell #8 is already occupied by another planet not yet observed. Then the error for the d's distance would drop to $\simeq 4.5\%$, and the closest distance of the two planets on their orbits would be $\sim 3 \times 10^5$ km (~Earth–Moon distance).

Our numerical results for the exoplanetary system TRAPPIST-1 show that the polytropic shell #12 either remains unoccupied, or it points to prediction of one further planet not yet observed. For this shell, we have found $\alpha_{L12} = 0.0576 \text{ AU}$, $\alpha_{12} = 0.0605 \text{ AU}$, and $\alpha_{R12} = 0.0618 \text{ AU}$. Likewise, in accordance with the up-to-now observations, the shells next to the polytropic shell #13 seem to be unoccupied. For the next seven shells we have found $\alpha_{14} = 0.0834 \text{ AU}$, $\alpha_{15} = 0.0913 \text{ AU}$, $\alpha_{16} = 0.1034 \text{ AU}$, $\alpha_{17} = 0.1242 \text{ AU}$, $\alpha_{18} = 0.1298 \text{ AU}$, $\alpha_{19} = 0.1537 \text{ AU}$, and $\alpha_{20} = 0.1777 \text{ AU}$.

References

- [1] V. S. Geroyannis, arXiv:1411.5390v1 [astro-ph.EP] (2014).
- [2] V. S. Geroyannis, arXiv:1501.04189v1 [astro-ph.EP] (2015).
- [3] V. S. Geroyannis, arXiv:1506.06344v1 [astro-ph.EP] (2015).
- [4] M. Gillon, Amaury H. M. J. Triaud, B.-O. Demory, et al., Nature, 542 (Issue 7642), 456 (2017).
- [5] M. Lingam and A. Loeb, arXiv:1703.00878v1 [astro-ph.EP] (2017).
- [6] P. J. Wheatley, T. Louden, V. Bourrier, et al., MNRAS Letters, 465 (Issue 1), L74 (2017).
- [7] J. T. O'Malley-James and L. Kaltenegger, arXiv:1702.06936v1 [astro-ph.EP] (2017).
- [8] V. Geroyannis, F. Valvi and T. Dallas, International Journal of Astronomy and Astrophysics, 2014,4, 464 (2014). http://dx.doi.org/10.4236/ijaa.2014.43042

Table 1: The system TRAPPIST-1: central body S_1 , i.e. the host star TRAPPIST-1, and polytropic spherical shells of the planets b, c, d, e, f, g, h. For successive shells S_j and S_{j+1} , inner radius of S_{j+1} is the outer radius of S_j . All radii are expressed in AU, except for the host's radius ξ_1 . Percent errors $\% E_j$ in the computed orbit radii α_j are given with respect to the corresponding observed radii A_j , $\% E_j = 100 \times |(A_j - \alpha_j)|/A_j$. Parenthesized signed integers following numerical values denote powers of 10.

Host star TRAPPIST-1 – Shell No	1		
nopt	2.525(+00)		
$\hat{\mathcal{E}}_1$ (cpu)	54168(+00)		
$\xi_1 (B_{\odot})$	1.17 (-01)		
		A	%E
b – Shell No	6		702
Inner radius. \mathcal{E}_5	9.3829(-03)		
Outer radius, ξ_6	1.3307(-02)		
Left ADO, α_{L6}	9.4130(-03)		
Orbit radius, $\alpha_{\rm b} = \alpha_6$	9.4810(-03)	1.111(-02)	1.47(+01)
Right ADO, α_{B6}	1.0720(-02)		
c – Shell No	7		
Outer radius, ξ_7	1.9631(-02)		
Left ADO, α_{L7}	1.4536(-02)		
Orbit radius, $\alpha_c = \alpha_7$	1.6063(-02)	1.522(-02)	5.54(+00)
Right ADO, $\alpha_{\rm B7}$	1.7811(-02)		(.)
d – Shell No	8		
Outer radius, ξ_8	2.6154(-02)		
Left ADO, α_{L8}	2.2117(-02)		
Orbit radius, $\alpha_d = \alpha_8$	2.4001(-02)	2.1(-02)	1.43(+01)
Right ADO, $\alpha_{\rm R8}$	2.5177(-02)	· · · ·	
e – Shell No	9		
Outer radius, ξ_9	3.1860(-02)		
Left ADO, α_{L9}	2.6800(-02)		
Orbit radius, $\alpha_e = \alpha_9$	2.8111(-02)	2.8(-02)	3.98(-01)
Right ADO, α_{R9}	3.0247(-02)	· · · ·	· · · · ·
f – Shell No	10		
Outer radius, ξ_{10}	4.0928(-02)		
Left ADO, α_{L10}	3.3312(-02)		
Orbit radius, $\alpha_{\rm f} = \alpha_{10}$	3.5306(-02)	3.7(-02)	4.58(+00)
Right ADO, α_{R10}	3.8130(-02)		
g – Shell No	11		
Outer radius, ξ_{11}	5.2284(-02)		
Left ADO, α_{L11}	4.3295(-02)		
Orbit radius, $\alpha_{\rm g} = \alpha_{11}$	4.6360(-02)	4.5(-02)	3.02(+00)
Right ADO, α_{R11}	4.9450(-02)		
h – Shell No	13		
Inner radius, ξ_{12}	6.2345(-02)		
Outer radius, ξ_{13}	7.2790(-02)		
Left ADO, α_{L13}	6.2744(-02)		
Orbit radius, $\alpha_{\rm h} = \alpha_{13}$	6.4061(-02)	6.3(-02)	1.68(+00)
Right ADO, α_{R13}	6.8020(-02)		