KILLING SATELLITES WITH RESONANCES: THE DYNAMICS OF PASSIVE DEBRIS REMOVAL

Aaron J. Rosengren (Ααρών Τζέι Ροδόκλαδος)

University of Arizona, Tucson, Arizona USA Aristotle University of Thessaloniki, Thessaloniki, Greece

Despoina K. Skoulidou, Kleomenis Tsiganis, George Voyatzis

Aristotle University of Thessaloniki, Thessaloniki, Greece

13th Hellenic Astronomical Conference, Heraklion, Crete Tuesday 4 July 2017

ORBITING DEBRIS: A Space Environment Problem

"Space operations should comply with a general rule of the National Park Service: What you take in, you must take out." JOSEPH P. LOFTUS, JR./NASA Johnson Space Center

The Cataloged Space Debris (GNSS)

NORAD RESIDENT SPACE OBJECT CATALOG (www.space-track.org | ASSESSED 26 OCT 2016)

The Cataloged Space Debris (GNSS)

NORAD RESIDENT SPACE OBJECT CATALOG (www.space-track.org | ASSESSED 26 OCT 2016)

The Cataloged Space Debris (GNSS)

GALILEO CASE STUDY: Graveyard Disposal Strategy

 Seeking to identify long-term storage orbits, which have only small orbital deformations over hundreds of years

GALILEO CASE STUDY: *Graveyard* Disposal Strategy

 Seeking to identify long-term storage orbits, which have only small orbital deformations over hundreds of years

Phase Portrait (2,1,0) Apsidal Res.

Phase Portrait (0,2,-1) Nodal Res.

Phase Portrait (0,2,-1) Nodal Res.

Phase Portrait (0,2,-1) Nodal Res.

The Χαλαρά (Chalará) Disposal Strategy

- Disposal epoch can be correlated with an initial lunar node
- Satellite's node naturally precesses due to Earth oblateness perturbations
- Just wait (Chalará) for the appropriate lunar-satellite nodal phasing

GALILEO CASE STUDY: Re-entry Disposal Strategy

DEORBITING SYSTEM

Innovative systems to optimise deorbiting of satellites from LEO within 25 years after their end-of-life

 Seeking to cleverly exploit the dynamical instabilities brought on by resonant perturbations to deliver retired Earth-orbiting satellites into the regions where atmospheric drag can start their decay

→ DESIGN FOR DEMISE

Advanced solutions to enhance satellite burn-up upon re-entry in Earth atmosphere and minimise the associated casualty risk on-ground

Reachability Domain from Guass's Eqns

- satellites can be steered into a short-lived resonance
- passive systems deployed at the EOL to enhance SRP
- Reachability Analysis: which orbits can be reached for a given fuel constraint (ΔV), starting from some initial operational orbit?
 - for given operational orbit and single impulsive ΔV , we can determine the boundary of the achievable phase space from Gauss's equations

$$\begin{split} \Delta a &= \frac{2}{n\sqrt{1-e^2}} \left(e\sin f\Delta v_r + (1+e\cos f)\Delta v_t \right), \\ \Delta e &= \frac{H}{\mu} \left[\sin f\Delta v_r + \left(\frac{e+\cos f}{1+e\cos f} + \cos f \right)\Delta v_t \right], \\ \Delta I &= \frac{H}{\mu} \frac{\cos(\omega+f)}{1+e\cos f} \Delta v_z \end{split}$$

∆V Transfer Maps for Coplanar, Coaxial Elliptical Orbits

0.8

0.7

0.6

0.5

0.3

0.2

0.1

- For GNSS region, structures do not change for small ΔI
 - off-plane re-entry solutions require more fuel
- Restrict attention to disposal solutions on same 2D (a,e) dynamical map

Typical Result for Galileo

Epoch A2M(m^2/kg) a1(km)	e1	inc (dec	g) capo	om(deg) (omega(deg)) 		<u></u>
cond18 0.015 29601.31	0.0001	56.00	28	82.83	196.50			
								i I
REENTRY tps								
method & {optimal DV}/{min 1	ifetime}	ntp	id	a2(km)) e2	DV(r/sec)	DT(h)	\frown
t_life(yr)								
single burn, dom=0	optimal	283	27903	28987.8	87 0.0400	20.6	0.00	119.19
single burn, dom=0	lifemin	283	28149	29514.9	92 0.4600	276.2	0.00	36.13
single burn, dom=pi	optimal	258	31953	28987.8	87 0.0400	20.7	0.00	119.14
single burn, dom=pi	lifemin	258	32243	29620.3	33 0.4400	263.9	0.00	38.13
hohmann, dom=0	optimal	. 11	27229	27406.	71 0.0600	0 147.3	6.37	113.62
hohmann, dom=0	lifemin	. 11	27230	27406.	71 0.0800	0 150.0	6.27	101.05
hohmann, dom=pi	optimal	. 11	31279	27406.	71 0.0600	0 147.3	6.37	113.73
hohmann, dom=pi	lifemin	11	31280	27406.	71 0.0800	0 150.0	7.04	101.05
hohmann intersection, dom=0	optimal	62	28308	29936.	56 0.0400	72.7	7.31	116.76
hohmann intersection, dom=0	lifemin	62	28313	29936.	56 0.1400) 252.5 🛽	7.86	68.10
hohmann intersection, dom=pi	optimal	61	32358	29936.	56 0.0400	0 73.1 /	7.32	116.75
hohmann intersection, dom=pi	lifemin	61	32363	29936.	56 0.1400	0 252.9/	7.86	68.06
								\bigvee
GRAVEYARDS tps								
method & {optimal DV}		ntp	id	a2(km)) e2	DV(m/sec)	DT(h)	
t_life(yr)								
single burn, dom=0	optimal	. 0	NO	SOLUTIO	N			
single burn, dom=pi	optimal	. 0	NO	SOLUTIO	N			
hohmann, dom=0	optimal	. 7	28126	29514.9	92 0.0000	5.4	7.02	120.00
hohmann, dom=pi	optimal	. 7	32176	29514.9	92 0.0000	5.4	7.02	120.00
hohmann intersection, dom=0	optimal	. 0	NO	SOLUTIO	N			
hohmann intersection, dom=pi	optimal	. 0	NO	SOLUTIO	N			

Conclusions

- **Cartographic Maps**: complex interactions among different dynamical phenomena are depicted, identifying regions where the motion is stable and zones where secularly unstable behavior can emerge
- For the GNSS region, intricate escape hatches are carved by lunisolar secular resonances and widened by SRP (depends on orientation angles)
- Designed maneuvers needed to reach the optimal disposal orbit for each initial operational orbits
 - combined reachability analysis with dynamical maps
 - Δe analysis also used for targeting appropriate graveyards
- For re-entry trajectories, the permanence in LEO region complies with 25-year decay rule

"In contrast to a widespread cliché, the satellite problems still require the research on the level more fundamental than just tracing the microscopic influence of yet another tesseral harmonic." SŁAWOMIR BREITER, 2001

> Questions? Ερωτήσεις;

Ααρών Τζέι Ροδόκλαδος

ajrosengren@email.arizona.edu aaronjay@physics.auth.gr

