Current overarching science questions in solar physics and challenges for future ground-based telescopes

David B. Jess The 13th Hellenic Astronomical Conference 3rd July 2017

Courtesy of Stefano Ferro

Upcoming Ground-based Facilities

Upcoming Ground-based Facilities

Overarching Theme

- Magnetically dominated solar atmosphere, but difficult to directly measure fields in the corona
- Spectropolarimetric and radio observations are challenging due to signal-to-noise and resolution/cadence drawbacks

Magnetic Fields in the Solar Corona

- Liu et al. (2011) fast mode waves after a flare \rightarrow B ~ 8 G (coronal funnel)
- White & Verwichte (2011) transverse loop oscillations \rightarrow B ~ 3 – 19 G (coronal loop)
- Long et al. (2013) propagation of EIT waves \rightarrow B ~ 2 – 6 G (quiet Sun)
- Jess et al. (2016) seismology of slow mode waves \rightarrow B ~ 2 – 35 G (sunspots)

Insights with DKIST

Cryo-NIRSP (coronal mode)

Grating	Echelle – 32 line/mm
Wavelengths	1000 – 5000 nm
Spectral resolution	30,000
Pixel scale	0.12" arcsec along slit 0.5" arcsec slit width
Field of view	4' slit with 3' scan
Polarimetric accuracy	5 × 10 ⁻⁴
Sampled lines	He I, S IX, Si X, Fe XII, CO, Mg VIII

Fehlmann et al. (2016)

Magnetic Field Connectivity

courtesy of NASA's Scientific Visualization Studio

Magnetic Field Connectivity

- Magnetically dominated atmosphere, but not without complexities...
 - > Difficulty defining lower-boundary configurations (Georgoulis et al. 2012)
 - > Violation of the force-free assumption? (Metcalf et al. 2008)
 - > 20° 40° misalignment angles (DeRosa et al. 2009)
 - Insufficient spatial resolution? (DeRosa et al. 2015)

Magnetic Field Connectivity

- Need vector magnetograms from the chromosphere
 - > He I 10830Å or Ca II 8542Å from DST/SST/GREGOR/etc.
 - > Use as mid-level constraints for magnetic field extrapolation codes

Insights with ALMA

- Need vector magnetograms from the chromosphere
 - Effective formation height of the millimeter continuum radiation increases with height from the temperature minimum at the shortest wavelengths
 - Brightness temperature spectrum responds to the magnetic field along the line of sight due to the dependence of the free-free opacity on the local magnetic field strength

Insights with ALMA

- Need vector magnetograms from the chromosphere
 - > ALMA temperature and magnetic field diagnostics to test force freeness

Insights with ALMA

- Need vector magnetograms from the chromosphere
 - > ALMA temperature and magnetic field diagnostics to test force freeness

Free Energies

- Evidence for enough free energy in the quiet Sun to power fine-scale structures (~10³⁶ erg; Tziotziou et al. 2014)
- De Pontieu et al. (2011) found for chromospheric (spicule) jets:
 - > Mass flux ~ 1.5×10^{-9} g/cm²/s
 - > Energy flux ~ 2×10^6 erg/cm²/s
- Coronal counterparts rapidly propagate upwards strong upflows? Or wave related?

Waves Guided by Magnetic Fields

 Magnetic topology affects (slow magneto-acoustic) wave propagation by modifying the acoustic cutoff frequency (Bel & Leroy 1977):

- Chromospheric regions demonstrate a wealth of propagating/standing waves alongside evidence for mode conversion (Jess et al. 2012)
- Cut-off frequencies <5.2 mHz suggests the presence of small-scale, *unresolved* inclined magnetic fields (Kontogiannis et al. 2016)

Waves Guided by Magnetic Fields

- Krishna Prasad et al. (2017) employed:
 - > 3-hour dataset \Rightarrow high frequency resolution (~0.09 mHz)
 - > High cadence (up to 1s) \Rightarrow high Nyquist frequency (500 mHz)
 - ▶ High spatial resolution (up to 0.09 arcsec/pixel) \Rightarrow large pixel numbers (up to 3×10⁸)

Waves Guided by Magnetic Fields

La

- Clear evidence for coherent upwardly (\bullet) propagating magneto-acoustic waves
- Frequency-dependent damping is \odot consistent with coronal studies, where thermal conduction dominates (e.g., $\propto P^2$; Ofman & Wang 2002)
- But can thermal conduction still \odot dominate in the cooler lower atmosphere?

10⁸

Amplitude (arbitrary units) Constraints (arbitrary units)

108

1200

14500

Height (Km)

Energy flux (erg/cm²/s)

8

Insights with DKIST

Visible Broadband Imager (VBI)	
Spectral range	393.3 nm – 486.4 nm (<i>blue channel</i>) 656.3 nm – 705.8 nm (<i>red channel</i>)
Pixel scale	0.011" arcsec/pixel (blue) 8 <i>km/pixel</i> 0.017" arcsec/pixel (red) 12 <i>km/pixel</i>
Field of view	2' × 2' with 27s cadence
Relative photometry	2 × 10 ⁻² <i>I</i> ₀
Filters	Ca II K, G-band, Hβ, Hα, TiO, blue/red continua
Nöger et al. (2016)	

Free Energies

- Often treated as a proxy for solar activity and potential CMEs and space weather (e.g., Aschwanden et al. 2016)
- Nindos et al. (2012) found the increase of magnetic free energy and accumulated helicity during flux emergence contributed to the observed eruptions
- Eruptive events leading to EUV/X-ray jets with energies consistent with lower energy microflares (10²⁵ – 10²⁷ erg; Archontis & Hansteen 2014)
- Can small-scale fields provide more understanding of nanoflare activity?

Overarching Questions:

- Future observatories and facilities will push our understanding with better resolution, polarimetric precision and the ability to track phenomena across a multitude of temperatures:
 - > Magnetic field topology
 - > Waves vs flows atmospheric connectivity
 - > Reconnection events and associated space weather

