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Introduction

The Cataloged Space debris
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Introduction

The Cataloged Space debris
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Introduction

The problem of Space Debris

@ Proliferation of debris has motivated deeper analysis of the dynamical
environments occupied by satellites

@ Studies on the long-term dynamics about Earth are relevant now

@ A new paradigm in post-mission disposal: exploit resonant orbits to obtain
relatively stable graveyards or highly unstable disposal orbits

@ ReDSHIFT: identify dynamically interesting regions that harbor natural disposal
trajectories on realistic timescales (< 120years)
* provide dynamical survey of the whole, usable circumterrestrial space
* can increasing the satellite’s area-to-mass ratio promote the deorbiting
process?
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Introduction

The problem of Space Debris - LEO diposal strategy
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Introduction

Resonances in near-Earth region
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Dynamics of near-Earth space enviroment

- The oblateness apsidal and
nodal precession overshadows
the lunisolar effects
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Resonances in near-Earth region
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Introduction

Dynamical Model - Initial conditions

@ Initial two epochs:
22.74/12/2018
21.28/06/2020

@ Dynamical model: @ trax = 120 yr
* central body = Earth with gravity @ r > Rean + 400km
field up to degree and order 2 (i.e. A P T
J2.0, Jz,z) a (agzo) 0.150-1.050 | 0.498-0.664 | 0.600 - 0.710
* perturbing bodies = Moon & Sun A 00050 00ms 00
* Solar Radiation Pressure (SRP): e 0-09 0.5-0.8 0-0.88
- mean (satellites); Ae 0.015 0.015 0.02
1.5-10° km*/s® (SRP 1) i) 0-120 | 0235-10.235 |  0-90
- enhached: 1-10° km*/s® (SRP e
2) Ai 2 1 2
AQ () {0, 90, 180, 270}
LEO area — IFAC group, ltaly Aw ) {0,90, 130,270}
GEOQO area— POLIMI group, ltaly Cr(Afm) (m¥/kg) {0.015,1}

~ 18M of simulations
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Introduction

Symplectic integrator - Validation

SWIFT-SAT:
* based on Mixed Variable Symplectic t—e
Integrator (Wisdom and Holman, 1991) 0.0009
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Results

Circumterrestrial phase space (SRP1)
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@ LEO: Possible disposal routes at high-altitude LEO, related to solar gravity and
radiation pressure resonances. Escape times comply with the IADC 25-year rule

@ MEQO: For the GNSS region, intricate escape hatches are carved by lunisolar
secular resonances and widened by SRP.

@ GEO: Natural deficiency of reentry solutions, except for high-1 (BeiDou).
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Results

Circumterrestrial phase space (SRP2)
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@ LEO: Possible disposal routes at high-altitude LEO, related to solar gravity and
radiation pressure resonances. Escape times comply with the IADC 25-year rule

@ MEQO: For the GNSS region, intricate escape hatches are carved by lunisolar
secular resonances and widened by SRP.

@ GEO: Natural deficiency of reentry solutions, except for high-1 (BeiDou).
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Results

Circumterrestrial phase space
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GNSS phase space - i = 56°

AQ =0, Aw = 180° AQ = 90°, Aw = 180° AQ = 180°, Aw = 270° AQ = 270°, Aw = 90°

SRP2

@ Re-entry solutions feasible, but not for t < 25 yrs . .
Y R . Y @ Enhanced A/m can widen the re-entry regions
@ Results depend on secular orientation angles and epoch
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Results

GTO phase space
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@ SRP is not very important, but helps
@ Re-entry is easier at high inclinations
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Conclusions

Conclusions

@ We have successfully completed a massive campaign of simulations,
encompassing the whole circumterrestrial region (~ 18M orbits)

@ We have constructed the most complete to date dynamical atlas,
both for the nominal and the ‘enchached’ A/m satellite cases
o GNSS:
o Re-entry times of 40 — 60 yr feasible

o Design of maneuvers to reach the optimal diposal orbit for each initial
operational orbit

e GTO:

e Enhanced SPR is not enough for natural re-entry
o Atmospheric drag may help - need to check
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attention!
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