Dynamical study of the near-Earth space environment for passive debris removal

Despoina K. Skoulidou¹

Aaron J. Rosengren^{1,2}, Kleomenis Tsiganis¹ and George Vovatzis¹

¹Aristotle University of Thessaloniki, ²University of Arizona

13th Hellenic Astronomical Conference July 4, 2017

The Cataloged Space debris

NORAD RESIDENT SPACE OBJECT CATALOG (www.space-track.org | ASSESSED 26 OCT 2016)

The Cataloged Space debris

NORAD RESIDENT SPACE OBJECT CATALOG (www.space-track.org | ASSESSED 26 OCT 2016)

The problem of Space Debris

- Proliferation of debris has motivated deeper analysis of the dynamical environments occupied by satellites
- Studies on the long-term dynamics about Earth are relevant now
- A new paradigm in post-mission disposal: exploit resonant orbits to obtain relatively stable graveyards or highly unstable disposal orbits
- ReDSHIFT: identify dynamically interesting regions that harbor natural disposal trajectories on realistic timescales (< 120*years*)
 - * provide dynamical survey of the whole, usable circumterrestrial space
 - * can increasing the satellite's area-to-mass ratio promote the deorbiting process?

The problem of Space Debris

- Proliferation of debris has motivated deeper analysis of the dynamical environments occupied by satellites
- Studies on the long-term dynamics about Earth are relevant now
- A new paradigm in post-mission disposal: exploit resonant orbits to obtain relatively stable graveyards or highly unstable disposal orbits
- ReDSHIFT: identify dynamically interesting regions that harbor natural disposal trajectories on realistic timescales (< 120*years*)
 - * provide dynamical survey of the whole, usable circumterrestrial space
 - * can increasing the satellite's area-to-mass ratio promote the deorbiting process?

The problem of Space Debris

- Proliferation of debris has motivated deeper analysis of the dynamical environments occupied by satellites
- Studies on the long-term dynamics about Earth are relevant now
- A new paradigm in post-mission disposal: exploit resonant orbits to obtain relatively stable graveyards or highly unstable disposal orbits
- ReDSHIFT: identify dynamically interesting regions that harbor natural disposal trajectories on realistic timescales (< 120*years*)
 - * provide dynamical survey of the whole, usable circumterrestrial space
 - * can increasing the satellite's area-to-mass ratio promote the deorbiting process?

The problem of Space Debris - LEO diposal strategy

Resonances in near-Earth region

Despoina K. Skoulidou (AUTh)

Resonances in near-Earth region

Despoina K. Skoulidou (AUTh)

Dynamical Model - Initial conditions

- Dynamical model:
- * central body \Rightarrow Earth with gravity field up to degree and order 2 (i.e. $J_{2,0}, J_{2,2}$)
- * perturbing bodies \Rightarrow Moon & Sun
- * Solar Radiation Pressure (SRP):
 - mean (satellites): $1.5 \cdot 10^6 \ km^3/s^2 \ (SRP 1)$
 - enhached: 1 · 10⁸ km³/s² (SRP 2)

LEO area \rightarrow IFAC group, Italy GEO area \rightarrow POLIMI group, Italy

- Initial two epochs: 22.74/12/2018 21.28/06/2020
- $t_{max} = 120 \ yr$
- $r > R_{Earth} + 400 km$

	ALL*	GTO [†]	MEO
$a(a_{GEO})$	0.150 - 1.050	0.498 - 0.664	0.600 - 0.710
Δa	0.0050	0.00475	0.0025
e	0 - 0.9	0.5 - 0.8	0-0.88
Δe	0.015	0.015	0.02
i (°)	0 - 120	$\begin{array}{c} 0.235 - 10.235 \\ 23.533 - 33.533 \\ 41 - 51 \end{array}$	0 - 90
Δi	2	1	2
$\Delta\Omega$ (°) [†]	$\{0, 90, 180, 270\}$		
$\Delta \omega$ (°) [†]	$\{0, 90, 180, 270\}$		
$C_R(A/m)$ (m ² /kg)	$\{0.015, 1\}$		

$\sim 18 M$ of simulations

Symplectic integrator - Validation

SWIFT-SAT:

- based on Mixed Variable Symplectic Integrator (Wisdom and Holman, 1991)
- * suitable for bodies of negligible mass
- * full non-averaged equations of motion
- * validation with DROMO: a regularized method for evaluation of orbital elements (Davide Amato, UPM group)

t - e

Dynamics of near-Earth space environment

Results

Circumterrestrial phase space (SRP1)

- LEO: Possible disposal routes at high-altitude LEO, related to solar gravity and radiation pressure resonances. Escape times comply with the IADC 25-year rule
- MEO: For the GNSS region, intricate escape hatches are carved by lunisolar secular resonances and widened by SRP.
- GEO: Natural deficiency of reentry solutions, except for high-I (BeiDou).

Results

Circumterrestrial phase space (SRP2)

- LEO: Possible disposal routes at high-altitude LEO, related to solar gravity and radiation pressure resonances. Escape times comply with the IADC 25-year rule
- MEO: For the GNSS region, intricate escape hatches are carved by lunisolar secular resonances and widened by SRP.
- GEO: Natural deficiency of reentry solutions, except for high-I (BeiDou).

Circumterrestrial phase space

Despoina K. Skoulidou (AUTh)

Dynamics of near-Earth space environment

Results

GNSS phase space - $\mathbf{i} = \mathbf{56}^{\circ}$

- Re-entry solutions feasible, but not for t < 25 yrs</p>
- Results depend on secular orientation angles and epoch

Enhanced A/m can widen the re-entry regions

GTO phase space

SRP2

- SRP is not very important, but helps
- Re-entry is easier at high inclinations

Conclusions

- We have successfully completed a massive campaign of simulations, encompassing the whole circumterrestrial region (\sim 18M orbits)
- We have constructed the most complete to date dynamical atlas, both for the nominal and the 'enchached' A/m satellite cases
- <u>GNSS</u>:
 - Re-entry times of $40 60 \ yr$ feasible
 - Design of maneuvers to reach the optimal diposal orbit for each initial operational orbit
- <u>GTO</u>:
 - Enhanced SPR is not enough for natural re-entry
 - Atmospheric drag may help need to check

Thank you for your attention!