Calculating relative magnetic helicity in spherical wedge volumes

Kostas Moraitis¹, E. Pariat¹, A. Savcheva²

¹ LESIA, Observatoire de Paris, PSL*, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, USPC ² Harvard-Smithsonian CfA

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

- Introduction Magnetic helicity
- Method description
- Method validation
- Application to NLFF fields Results
- Concluding remarks

- Introduction Magnetic helicity
- Method description
- Method validation
- Application to NLFF fields Results
- Concluding remarks

Introduction Magnetic helicity

n.

. Signed scalar quantity (right (+), or left (-) handed)

$$H = \int A \cdot B dV \qquad B = \nabla \times A$$

- Helicity measures the twist and writhe of mfls, and the amount of flux linkages between pairs of lines (Gauss linking number)
- . Gauge invariant only for closed **B**

$$B\Big|_{\partial V} = 0$$

Relative magnetic helicity

$$H = \int (A + A_p) \cdot (B - B_p) dV$$

gauge invariant for closed (and solenoidal) $B_i = B - B_p$

$$\left. \begin{array}{l} \left. \hat{n} \cdot B_j \right|_{\partial V} = 0 \Rightarrow \\ \left. \hat{n} \cdot B \right|_{\partial V} = \left. \hat{n} \cdot B_p \right|_{\partial V} \\ \left. \begin{array}{l} \partial V \end{array} \right. \\ \text{the whole boundary} \end{array} \right.$$

True FieldReference FieldBerger & Field 1984, Finn & Antonsen 1985

13th Hellenic Astronomical Conference

Introduction Magnetic helicity properties

- Conserved in ideal MHD (Woltjer 1958), and approximately conserved in resistive MHD (Taylor 1974, Pariat et al. 2015); topological invariant
- Emerges via helical magnetic flux tubes and/or is generated by photospheric proper motions
- An isolated configuration with accumulated magnetic helicity cannot relax to a potential field (but to a LFF)
- If not transferred to larger scales

it can only be expelled in the form of CMEs (Rust 1994)

Török & Kliem 2005

Introduction Magnetic helicity applications

Introduction Magnetic helicity calculations

- Finite volume methods in cartesian coordinates
- Require **B** in 3D volume
- Many methods developed the last years
 - . DeVore gauge

Valori et al. 2012, Moraitis et al. 2014

. Coulomb gauge

Thalmann et al. 2011, Yang et al. 2013, Rudenko et al. 2011

 Methods agree (ISSI team "Helicity estimations in models and observations", Valori et al. 2016)

Introduction Magnetic helicity calculations

Introduction Magnetic helicity calculations

- Finite volume methods in cartesian coordinates
- Require **B** in 3D volume
- Many methods developed the last years
 - . DeVore gauge

Valori et al. 2012, Moraitis et al. 2014

. Coulomb gauge

Thalmann et al. 2011, Yang et al. 2013, Rudenko et al. 2011

- Methods agree (ISSI team "Helicity estimations in models and observations", Valori et al. 2016)
- Considering only the photospheric boundary can lead to incorrect helicity values, and even to incorrect sign (Valori et al. 2011)

- Introduction Magnetic helicity
- Method description
- Method validation
- Application to NLFF fields Results
- Concluding remarks

Helicity calculation method Potential field

 $\mathbf{B}_{\mathrm{p}} = \nabla \Phi$

numerical solution of Laplace's equation $\nabla^2 \Phi = 0$

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Phi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Phi}{\partial\theta}\right) + \frac{1}{r^2\sin\theta^2}\frac{\partial^2\Phi}{\partial\phi^2} = 0$$

in the spherical wedge

 $r_{\sin(\theta + d\theta) d\phi} V = \{ (r, \theta, \varphi) : r \in [r_{\min}, r_{\max}], \theta \in [\theta_{\min}, \theta_{\max}], \varphi \in [\varphi_{\min}, \varphi_{\max}] \}$ $\frac{\partial \Phi}{\partial \hat{n}}$

with Neumann BCs

$$= \hat{n} \cdot \mathbf{B}|_{\partial V}$$

- Multigrid technique (MUDPACK library)
- $\int_{\partial V} \mathbf{B} \cdot \mathbf{dS} = 0$ • BVP well defined only for flux-balanced 3D field (check with 2 flags)
- Current version requires special grid size

r sin∂ dø

Helicity calculation method Vector potentials

invert $B = \nabla \times A$ for vector potential \mathbf{A} with the method of Valori et al. 2012 (modified) DeVore gauge $\mathbf{\hat{r}} \cdot A$ $\mathbf{A}(r, \theta, \phi) = \frac{1}{r} \left(r_0 \boldsymbol{\alpha}(\theta, \phi) + \hat{\mathbf{r}} \times \int_{r_0}^r dr' r' \mathbf{B}(r', \theta, \phi) \right)$. $\nabla_{\perp} \times \boldsymbol{\alpha} = \frac{1}{r_0 \sin \theta} \left(\frac{\partial}{\partial \theta} (\sin \theta \alpha_{\phi}) - \frac{\partial \alpha_{\theta}}{\partial \phi} \right) = B_r(r_0, \theta, \phi)$ DVS gauge $\alpha_{\phi}(\theta, \phi) = \frac{cr_0}{\sin \theta} \int_{\theta_0}^{\theta} d\theta' \sin \theta' B_r(r_0, \theta', \phi)$ $\mathbf{a} = \hat{\mathbf{r}} \times \nabla_{\perp} u = \frac{1}{r_0} \left(-\frac{1}{\sin \theta} \frac{\partial u}{\partial \phi}, \frac{\partial u}{\partial \theta} \right)$ $\nabla_{\perp} \boldsymbol{\alpha} = 0$

$$\alpha_{\theta}(\theta,\phi) = -(1-c)r_0 \sin \theta \int_{\phi_0}^{\phi} \mathrm{d}\phi' B_r(r_0,\theta,\phi').$$

Amari et al. 2013, Yeates & Hornig 2016

 $\nabla^2_\perp u = B_r(r_0, \theta, \phi)$

- Formulas valid for divergence-free fields
- Differentiation with 2nd order derivatives, integration with trapezoidal rule
- Top/bottom reference planes give different results top is usually better
- Same formulas for **B** and **B**_p

- Introduction Magnetic helicity
- Method description
- Method validation
- Application to NLFF fields Results
- Concluding remarks

Method validation Low & Lou field

- semi-analytical, force-free fields of Low & Lou 1990
- LL parameters:
 n=*m*=1, *l*=0.3, Φ=π/4
- angular size: 20°x20° on the Sun, or ~200Mm x ~200Mm
- AR height: 200Mm
- resolution: 129x129x129 grid points
 - 257x257x257 grid points
- Test for:

resolution reference plane solenoidality

Method validation Low & Lou field – Potential field

field	grid	$\langle f_i \rangle$	ϵ_{flux}	ξ	E	$E_{\rm c}/E$	$E_{\rm div}/E$	s_{\max}
в	120	2.2110^{-4}	1.7010^{-3}	1.9910^{-2}	45.3	0.262	1 1010 - 3	7010-3
$\mathbf{B}_{\mathbf{p}}$	129	1.1510^{-4}	$1.83 10^{-3}$	1.8110^{-4}	33.4	0.202	1.10 10	7.910
\mathbf{B}	257	2.1610^{-4}	2.1510^{-3}	$3.67 10^{-2}$	45.2	0.961	9 51 10-3	5.110^{-3}
$\mathbf{B}_{\mathbf{p}}$		2.1410^{-4}	$2.23 10^{-3}$	3.5910^{-4}	33.4	0.201	2.51 10	

 $f_i = \frac{\int_{\Delta S_i} \boldsymbol{B} \cdot \boldsymbol{dS}}{\int_{\Delta S_i} |\boldsymbol{B}| \, \boldsymbol{dS}} \approx \frac{(\boldsymbol{\nabla} \cdot \boldsymbol{B})_i \, \Delta V_i}{B_i \, A_i}$ average fractional flux increase • (Wheatland et al. 2000)

flux imbalance ratio
$$\epsilon_{\text{flux}} = \frac{|\Phi^+ - \Phi|}{\Phi^+ + \Phi}$$

$$\epsilon_{\rm flux} = \frac{|\Phi^+ - \Phi^-|}{\Phi^+ + \Phi^-}$$

• average of the Lorentz force relative to its components • (Malanushenko et al. 2014)

$$= -\frac{c}{8\pi} \nabla_{\perp} B^2 + \frac{c}{4\pi} B^2 \frac{d\mathbf{\hat{b}}}{db} \equiv \mathbf{F}_{\rm mp} + \mathbf{F}_{\rm mt}$$

 $\xi = \frac{1}{N} \sum_{i=1}^{N} \frac{|\mathbf{F}_{\mathrm{L}}|}{|\mathbf{F}_{\mathrm{L}}|}$

$$E_c = \frac{1}{8\pi} \int dV B^2 - \frac{1}{8\pi} \int dV B_p^2$$

 $\mathbf{F}_{\mathbf{L}}$

· 'divergence' energy

• free energy

$$E_c' = \frac{1}{8\pi} \int dV \left(B - B_p \right)^2$$

 $E_{dima} = |E_a - E_a'|$

13th Hellenic Astronomical Conference

Method validation Low & Lou field – Potential field

В B_p vs B B-B 200 100 n B_r @ r=r_{min} -100 -200 300 -200 -100 100 -200 -100 100 200 0 -2 2 4 -300 0 0 -6 0.5 0.0 -0.5 $B_{\theta} \textcircled{0} \theta = \theta_{\min}$ -1.0-1.5-2.0 -2.5 -1.5 -1.0 -0.5 0.0 -0.02 0.00 0.02 0.04 0.06 0.08 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 -2.0 n B_φ @ φ=φ_{min} -2 -0.06 -0.04 -0.02 0.00 -2 2 -2 0 0 -3 -1 1 -6 -4 -4

13th Hellenic Astronomical Conference

Method validation Low & Lou field – Vector potential

			correlation coefficients of								
			$\mathbf{B} \text{ vs } \nabla \times \mathbf{A}$			Schrijver metrics					
field	gauge	grid	B_r	B_{θ}	B_{ϕ}	C_{vec}	C_{CS}	E'_{n}	$E'_{\rm m}$	ϵ	
в	DVSt	129	0.9999	1.0000	1.0000	0.9999	1.0000	0.9948	0.9959	0.9980	
	DVSt	257	0.9999	1.0000	1.0000	0.9999	1.0000	0.9942	0.9949	0.9986	
	DVSb	129	0.9990	1.0000	1.0000	0.9995	0.9986	0.9814	0.9613	1.0025	
	DVCt	129	0.9999	1.0000	1.0000	0.9999	0.9999	0.9947	0.9953	0.9980	
B_p	DVSt	129	1.0000	1.0000	1.0000	1.0000	0.9997	0.9884	0.9816	0.9998	
	DVSt	257	0.9995	1.0000	1.0000	0.9997	0.9962	0.9568	0.9283	0.9993	
	DVSb	129	0.9990	1.0000	1.0000	0.9995	0.9920	0.9727	0.9441	0.9901	
	DVCt	129	1.0000	1.0000	1.0000	1.0000	0.9997	0.9883	0.9814	0.9998	

- Successful reconstruction
- Top better than bottom
- . DVS equivalent to DVC
- . Small differences with resolution
- . Metrics for \boldsymbol{B}_{p} worse than \boldsymbol{B}

- C_{CS}^{vec} Cauchy-Schwarz
 - complement of the normalized vector error
- E_m' complement of the mean vector error
- total energy normalized to that of the input field
 Schrijver et al. 2006

- Introduction Magnetic helicity
- Method description
- Method validation
- Application to NLFF fields Results
- Concluding remarks

Application to NLFF fields

NOAA AR 11060 (SOL2010-04-08) location: N25E16 activity: B3.7 flare (8 Apr 2010 02:30 UT)

data-driven NLFF modelling: Su et al. 2011, Savcheva et al. 2016

- . SDO/HMI LOS magnetogram
- . insert flux-rope along selected filament
- relax to force-free state with magnetofrictional method
- compare pre-flare coronal loops with disk-projected field lines

Application to NLFF fields

Compute instantaneous helicity during relaxation with:

- New, exact method
- Approximate method introduced in Bobra et al. 2008

$$H_{R} = \int_{V_{c}} (\boldsymbol{A} \cdot \boldsymbol{B} - \boldsymbol{A}_{p} \cdot \boldsymbol{B}_{p}) \, dV + \int_{S} \chi B_{r} \, dS$$
$$\boldsymbol{A}_{1} - \boldsymbol{A}_{2} = \nabla \chi$$

Application to NLFF fields

- . Helicity relaxes to constant value
- . Results for the 3 gauges very close
- Approximate method similar pattern, but up to 2 off

Conclusions

- Helicity is an important quantity in solar applications
- Helicity computations in spherical geometry were lacking, but needed
- We developed the first consistent helicity calculation method in spherical coordinates
- Testing indicates that method is working
- Preliminary results from application to NLFF fields show improvement on helicity wrt approximate methods + the importance of taking into account all boundaries