Relativistic magnetised cosmological perturbations in the post-recombination era

Dimitra Tseneklidou

Department of Physics Aristotle University of Thessaloniki Thessaloniki, Greece

Large Scale Magnetic Fields

Magnetic Fields are Everywhere

From the Earth and the Sun, to distant galaxies and clusters ($B\sim 10^{-6}~G$) Even in the intergalactic voids ? ($B\sim 10^{-15}~G$)

Origin of Large Scale Magnetic Fields (open question)

- Astrophysical (after recombination)
- Cosmological (before recombination)

During inflation

After inflation

Implications for Large Scale Structure Formation

- How magnetic fields affect the evolution of density perturbations
- Relativistic studies in the dust era are incomplete

Magnetic Fields in GR and Ideal MHD

Fluid Description

Magnetic energy-momentum tensor

$$T_{ab}^{(B)} = \frac{1}{2} B^2 u_a u_b + \frac{1}{6} B^2 h_{ab} + \Pi_{ab}$$

with

$$\rho_B = \frac{1}{2} B^2, \qquad p_B = \frac{1}{6} B^2$$

and

$$\Pi_{ab} = \frac{1}{3}B^2h_{ab} - B_aB_b \Rightarrow \begin{cases} k^b\Pi_{ab} = +\frac{1}{3}B^2k_a, & \text{magnetic pressure } (k_a \perp B_a) \\ n^b\Pi_{ab} = -\frac{2}{3}B^2n_a, & \text{magnetic tension } (n_a//B_a) \end{cases}$$

Interaction with Geometry/Gravity

Einstein equations (Standard interaction)

$$G_{ab} = \kappa (T_{ab}^{(m)} + T_{ab}^{(B)})$$

Ricci identities (Geometric interaction)

$$2\nabla_{[a}\nabla_{b]}B_c = R_{abcd}B^d \qquad (R_{abcd})$$

Inhomogeneity Variables

Key Variable

Inhomogeneities in the matter density

$$\Delta_a = \frac{a}{\rho} D_a \rho$$

(a: scale factor)

as measured by two neighbouring observers.

Auxiliary Variables

Inhomogeneities in the expansion

$$\mathcal{Z}_a = aD_a\Theta$$

(Θ: volume expansion)

Inhomogeneities in the magnetic energy density

$$\mathcal{B}_a = \frac{a}{B^2} D_a B^2 \qquad (B^2 = B^a B_a)$$

Basic Equations (Ideal MHD)

Conservation Laws and Kinematic Equations

Continuity equation

$$\dot{\rho} = -\Theta(\rho + p)$$

Equation of motion (Navier - Stokes)

$$\left(\rho + p + \frac{2}{3}B^2 \right) A_a = -D_a p - \frac{1}{2}D_a B^2 + B^b D_b B_a - \Pi_{ab} A^b$$

Raychaudhuri's equation (basic kinematic formula)

$$\dot{\Theta} = -\frac{1}{3}\Theta^2 - \frac{1}{2}\left(\rho + 3p + B^2\right) - 2(\sigma^2 - \omega^2) + D^a A_a + A_a A^a$$

Maxwell's Equations in the Ideal MHD

$$\dot{B}_{a}=-rac{2}{3}B_{a}+(\sigma_{ab}+\omega_{ab})B^{b}$$
 (Magnetic Induction Law)

and

$$D^aB_a=0$$

(Gauss Law)

Non-magnetised Background

Zero-perturbative order Variables

$$ho
ightarrow ar{
ho} = ar{
ho}(t), \qquad p
ightarrow ar{
ho} = ar{p}(t) \quad ext{ and } \quad rac{\Theta}{3}
ightarrow H = H(t)$$

Zero-perturbative order Equations

$$H^2 = \frac{1}{3}\kappa\rho$$
 and $\dot{H} = -H^2 - \frac{1}{6}\kappa(\rho + 3p)$

Background Magnetic Field

Sufficiently random and weak B-field so that:

$$\langle ar{\emph{B}}_{\emph{a}}
angle = 0, \qquad \langle ar{\emph{B}}^{\emph{2}}
angle
eq 0 \quad \mbox{ and } \quad \frac{\langle ar{\emph{B}}^{\emph{2}}
angle}{ar{\emph{o}}} \ll 1$$

Magnetic evolution

$$(\bar{B}^2)^{\cdot} = -4H\bar{B}^2 \Rightarrow \bar{B}^2 \propto a^{-4}$$

Linear Evolution Equations

Evolution of the Inhomogeneities

In matter density

$$\dot{\Delta}_a=3wH\Delta-(1+w)\mathcal{Z}_a+rac{3aH}{
ho}\left(rac{1}{2}D_aB^2-B^bD_bB_a
ight)+2{c_a}^2(1+w)aHA_a$$

In volume expansion

$$\dot{\mathcal{Z}}_a = -2H\mathcal{Z}_a - \frac{1}{2}\rho\Delta_a - \frac{1}{2}B^2\mathcal{B}_a + \frac{3}{2}a\left(\frac{1}{2}D_aB^2 - B^bD_bB_a\right) + aD_aA$$

In magnetic energy density

$$\dot{\mathcal{B}}_{a} = \frac{4}{3(1+w)}\dot{\Delta}_{a} - \frac{4wH}{1+w}\Delta_{a} - \frac{4aH}{\rho(1+w)}\left(\frac{1}{2}D_{a}B^{2} - B^{b}D_{b}B_{a}\right) - 4aH\left(1 + \frac{2}{3}c_{a}^{2}\right)A_{a}$$

Parameters

- Barotropic index: $w = \bar{p}/\bar{\rho} = \text{constant} \Rightarrow w = c_s^2 = d\bar{p}/d\bar{\rho}$ (sound speed)
- Alfvén speed: $c_a{}^2 = \frac{\bar{B}^2}{\bar{\rho}(1+w)} \Rightarrow c_a{}^2 \ll 1$

Density Perturbations

Three Types of Inhomogeneity for Matter Density

$$\Delta_{ab} = aD_b\Delta_a = \frac{1}{3}\Delta h_{ab} + \Delta_{[ab]} + \Delta_{\langle ab\rangle}$$

 \bullet $\Delta = aD^a\Delta_a$: describes density perturbations (scalar)

$$\left(\Delta
ightarrow \delta = \delta
ho/ar
ho \gtrapprox 0
ight)$$

- $\Delta_{[ab]} = aD_{[b}\Delta_{a]}$: depicts density vortices (vector)
- $\Delta_{\langle ab \rangle} = a D_{\langle b} \Delta_{a \rangle}$: monitors shape distortions (trace-free tensor)

Three Types of Inhomogeneity for \mathcal{Z}_a and \mathcal{B}_a

$$\mathcal{Z}_{ab} = aD_b\mathcal{Z}_a = \frac{1}{3}\mathcal{Z}h_{ab} + \mathcal{Z}_{[ab]} + \mathcal{Z}_{\langle ab \rangle}$$

$$\mathcal{B}_{ab} = aD_b\mathcal{B}_a = \frac{1}{3}\mathcal{B}h_{ab} + \mathcal{B}_{[ab]} + \mathcal{B}_{\langle ab \rangle}$$

Matter Density Perturbations

$$\dot{\Delta} = -\mathcal{Z} + \frac{3}{2}\textit{Hc}_{a}{}^{2}\mathcal{B} - c_{a}{}^{2}\textit{Ha}^{2}\mathcal{R} - 6\textit{H}\frac{\textit{a}^{2}}{\rho}\left(\sigma_{\textit{B}}{}^{2} - \omega_{\textit{B}}{}^{2}\right)$$

where

- \mathcal{R} : perturbed 3-Ricci scalar ($\mathcal{R} \geq 0$)
- $\sigma_B^2 = D_{(b}B_{a)}D^{(b}B^{a)}/2$: magnetic shear (deformation of the B-field lines)
- $\omega_B^2 = D_{[b}B_{a]}D^{[B}B^{a]}/2$: magnetic vorticity (twisting of the B-field lines)

Expansion Perturbations

$$\begin{split} \dot{\mathcal{Z}} = & - 2H\mathcal{Z} - \frac{1}{2}\rho\Delta + \frac{1}{4}c_{a}^{2}\rho\mathcal{B} - \frac{1}{2}c_{a}^{2}D^{2}\mathcal{B} \\ & - \frac{1}{2}c_{a}^{2}\rho a^{2}\mathcal{R} - 3a^{2}\left(\sigma_{B}^{2} - \omega_{B}^{2}\right) + \frac{2a^{2}}{\rho}D^{2}\left(\sigma_{B}^{2} - \omega_{B}^{2}\right) \end{split}$$

Magnetic Energy Density Perturbations

$$\dot{\mathcal{B}} = \frac{4}{3}\dot{\Delta} \Rightarrow \mathcal{B} = \frac{4}{3}\Delta + C$$

Matter Density Perturbations

$$\ddot{\Delta}=-2H\dot{\Delta}+\frac{1}{2}\kappa\rho\Delta+\frac{2}{3}\textit{c}_{\textit{a}}{}^{2}\textit{D}^{2}\Delta+\frac{2}{3}\textit{c}_{\textit{a}}{}^{2}\rho\textit{a}^{2}\mathcal{R}+4\textit{a}^{2}\left(\sigma_{\textit{B}}{}^{2}-\omega_{\textit{B}}{}^{2}\right)-2\frac{\textit{a}^{2}}{\rho}\textit{D}^{2}\left(\sigma_{\textit{B}}{}^{2}-\omega_{\textit{B}}{}^{2}\right)$$

where c_a : Alfvén speed = wave speed

Harmonic Decomposition

$$\ddot{\boldsymbol{\Delta}}_{(n)} = -2H\dot{\boldsymbol{\Delta}}_{(n)} + \frac{1}{2}\kappa\rho\left[1-\left(\frac{\lambda_{J}}{\lambda_{n}}\right)^{2}\right]\boldsymbol{\Delta}_{(n)} + 4\boldsymbol{a}^{2}\left[1+\frac{1}{6}\left(\frac{\lambda_{H}}{\lambda_{n}}\right)^{2}\right](\boldsymbol{\sigma_{B}}^{2}-\boldsymbol{\omega_{B}}^{2})_{(n)} + \frac{2}{3}\rho\boldsymbol{c_{a}}^{2}\boldsymbol{a}^{2}\mathcal{R}_{(n)}$$

where

- $\lambda_n = a/n$: physical scale of the perturbation
- $\lambda_H = 1/H$: Hubble horizon ($\lambda_H = 3 \times 10^3 \, Mpc$)
- $\lambda_J = \frac{2}{3}c_a\lambda_H \ll \lambda_H$: Magnetic Jeans length $\begin{cases} \lambda_J \sim 1 \text{Mpc} & \text{if } B \sim 10^{-6} \text{ G} \\ \lambda_J \sim 10 \text{kpc} & \text{if } B \sim 10^{-7} \text{ G} \end{cases}$

Dust with magnetic pressure (R = 0 =magnetic tension)

$$\Delta_{(n)} = C_1 t^{-\frac{1}{6} + \frac{1}{6}\sqrt{25 - 24\alpha}} + C_2 t^{-\frac{1}{6} - \frac{1}{6}\sqrt{25 - 24\alpha}}$$
 (power law)

where $\alpha = (\lambda_J/\lambda_n)^2 = constant$

Cases

 \bullet $\lambda_n \gg \lambda_J$

$$\Delta_{(n)} = C_1 t^{\frac{2}{3}} + C_2 t^{-1}$$
 (standard non-magnetised)

 \bullet $\lambda_n \ll \lambda_J$

$$\Delta_{(n)} = t^{-\frac{1}{6}} \left(C_1 t^{+i\frac{\sqrt{24\alpha}}{6}} + C_2 t^{-i\frac{\sqrt{24\alpha}}{6}} \right)$$

 \bullet $\lambda_n = \lambda_J$

$$\Delta_{(n)} = C_1 + C_2 t^{\frac{-1}{3}}$$

Conclusion

Magnetic pressure inhibits the growth of matter density perturbations

Dust with magnetic pressure and tension (R = 0)

Linear system of differential equations:

$$\ddot{\Delta}_{(\textit{n})} = -2 \textit{H} \dot{\Delta}_{(\textit{n})} + \frac{1}{2} \kappa \rho \left[1 - \left(\frac{\lambda_\textit{J}}{\lambda_\textit{n}} \right)^2 \right] \Delta_{(\textit{n})} + 4 \textit{a}^2 \left[1 + \frac{1}{6} \left(\frac{\lambda_\textit{H}}{\lambda_\textit{n}} \right)^2 \right] \left(\sigma_{\textit{B}}^2 - \omega_{\textit{B}}^2 \right)_{(\textit{n})}$$

$$\left(\sigma_B^2 - \omega_B^2\right)^{\cdot} = -6H\left(\sigma_B^2 - \omega_B^2\right) \qquad \Rightarrow \qquad \left(\sigma_B^2 - \omega_B^2\right) \propto a^{-6}$$

Cases

•
$$\lambda_J \ll \lambda_n \ll \lambda_H$$

$$\Delta_{(n)} = C_1 t^{\frac{2}{3}} + C_2 t^{-1} + C_3$$

•
$$\lambda_n \ll \lambda_J$$

Decreasing oscillations:
$$\Delta_{(n)} \propto t^{-\frac{1}{6}}$$

$$\bullet$$
 $\lambda_n = \lambda_J$

$$\Delta_{(n)} = C_1 + C_2 t^{-\frac{1}{3}} + C_3 \ln t$$

Conclusion

Magnetic tension has a positive but small contribution

Relativistic Magnetised Baryonic Perturbations Revisited

Dust era: magnetic pressure + magnetic tension

Results

Magnetic pressure vs magnetic tension

- $\lambda \gg \lambda_J$: no magnetic effect (confirmed)
- $\lambda \ll \lambda_J$: decaying oscillations, $\Delta \propto t^{-1/6}$ (demonstrated)
- $\lambda \sim \lambda_J$: $\Delta = const.$ vs $\Delta \propto \ln t$ (demonstrated)

Future Work

- Include the magneto-curvature effects $(\mathcal{R} \geq 0)$
- Allow for curved background spacetimes (?)

