Volker Bothmer

University of Göttingen Institute for Astrophysics

3 July 2017 The 13th Hellenic Astronomical Conference

Credit: NASA

HELIOPHYSICS AND SPACE WEATHER -CHALLENGES AND PERSPECTIVES

Outline

- Introduction to Heliophysics From Mariner
 to SDO
- Space Weather and the Forecast
- Challenges and Perspectives Solar Probe,
 Solar Orbiton & Lagrange

Solar Orbiter & Lagrange

• Conclusions

The Sun Today

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2017 July 1

Coronal structures indicate the expansion of the solar atmosphere into space

Fig. 1.2. The solar corona as seen during the total solar eclipse on July 11, 1991. Courtesy: High Altitude Observatory (HAO), Boulder, USA.

The existence of the solar wind was deduced theoretically from HD equations by Parker in 1958

The Earth's atmosphere shields part of the solar EM Spectrum – Need for space exploration

Figure 3.3. Absorption of solar radiation by the Earth's atmosphere. The shaded areas provide the height above ground where the incoming intensity is reduced to 50% of its original strength. After Nicolson (1982), adapted by Stix (2004).

The advent of the space age: In 1962 Mariner 2 records the solar wind

Fig. 1.5 Three-hour averages of the solar wind proton density and flow speed observed by Mariner 2 in 1962 [1.21]. The time coordinate has been broken into 27-day solar rotation periods

Neugebauer und Snyder (1962)

velocity, km / sec

Solar wind sampling on moon – Apollo 11, 20 July <u>1969</u>

1973-1974: Skylab Observations

- 2.0 6 solar radii; Film detector (5" resolution)
- ~100 CMEs observed, established importance (and beauty); statistics; associations
- Weakness: limited film capacity, 3 short duration missions

A CME Observed with the Coronagraph

on board Skylab in 1973

<u>What is a CME</u>?

A new, discrete, bright feature appearing in the field of view of the coronagraph and moving outwards over a period of minutes to hours (Munro et al., 1979)

SKYLAB: Coronal Hole Extensions in 1974

27. Juni

25. Juli

21. August

16. September

14. Oktober

10. November

Solar wind characteristics at 1 AU based on Helios 1,2 measurements

Plasma bulk velocity V	300 – 800 km/s
Proton density N _P	10 cm ⁻³
Proton temperature T _P	4 · 10⁴ K
Electron temperature T _E	1.5 · 10⁵ K
Magnetic field strength B	4-5 nT
Plasma composition $e^{ts} \frac{10^4}{10^4} \frac{10^4}{10^4} \frac{10^2 \text{ July}}{10^4} \frac{10^4 \text{ July}}{10^4} 10^4 \text{ J$	95% Protons, 4% Helium ions, very few heavy elements, same number of free electrons (quas neutrality)

Helios-Orbit: 0.29 – 1 AU

Correlated Analysis of Remote Sensing and In-Situ Observations with P78-1 and Helios 1 & 2

Solwind Coronagraph on board P78-1 (1979-1985)

Helios-Orbit: 0.29 - 1 AU

The Helios 1 & 2 Spacecraft (1974-1986)

Burlaga: Magnetic Clouds

A Magnetic Cloud (Helical Flux Rope CME in the Solar Wind) Measured by Helios 1 following a S/C Directed CME

Suprathermal Electrons (E=221 keV)

Phillips et al., Solar Wind 7, 1992

IMF Polar (NS) Direction

IMF Azimuthal (EW) Direction

IMF Strength

Bothmer, Solar Wind 9, 119-126, 1999

Explanation for the Magnetic Structure of a CME in the Solar Wind

Goldstein, 1983; Bothmer & Schwenn, Ann. Geophys., 16, 1-24, 1998

The B&S Scheme for FR CMEs

Quadrupolar Fields not Included

Bothmer & Schwenn, 1998

The Sun's hot outer atmosphere, the EUV corona, is only visible from space

SKYLAB 1974

Yohkoh/SXT, 1992 August 26, 2 S/C pointings (E & W), 3-5 Million K

Solar cycle variation of the Sun's soft X-ray (0.25-4 keV) intensity (a factor of $\sim 10^2$): Yohkoh 92-99

Coronal Jets as Manifestations of Photospheric Variability on Small-Scales

Missions to achieve observations at new scales: Hinode, Solar Orbiter

Al_poly Hinode

EO_A SECCHI EUVI 171 1-May-2007 18:11:30.005

(2009)

<u>Nisticò e</u>t al.

Patsourakos et al., ApJ L. (2008); Pariat et al. (2008)

Moreno Insertis et al. (2008); Yokoyama & Shibata (1996)

Nisticò et al. (2009)

Bothmer and Nisticò (2009); Innes et al. (2008)

STEREO high res. Campaign, 171 Å, 75 seconds

The variable magnetic field of the Sun is the driver of solar activity and coronal structure

The Dynamic Corona Observed with SOHO/LASCO/EIT - December 1999 to January 2000

SOHO has observed >10.000 CMEs during 1996-2007.

Coronal Mass Ejections (CMEs) occur on variable spatial- and time-scales.

Speeds: 300->3.000 km/s

About 50 CMEs with speeds > 3.000 km/s per cycle

TA003573

Solar photospheric magnetic field can evolve dramatically in a few hours - October 2003

SOHO/EIT 19.5 nm

Radiation Hazard to Astronauts, Airline Crews and Passengers

SEP effects on SOHO solar cells

SEPs cause problems for stat trackers, electronic devices (e.g. Nozomi)

Brekke et al., 2006

Space Weather on Mars

- Human radiation hazards due to solar energetic particles (SEPS) and cosmic rays (CRs)
- Effects of SEPs and CRs on solar cells and electronic devices
- Effects of dust particles on solar cells

A solar flare erupting from the sun. Photo: AP Photo/NASA 'Solar storm' grounds Swedish air traffic

Published: 04 Nov 2015 17:01 GMT+01:00 Updated: 04 Nov 2015 17:25 GMT+01:00

Share

😏 Tweet 🛛 🕂 Share 🧒 reddit

Planes were grounded at some of Sweden's busiest airports on Wednesday afternoon because of a "solar storm" interfering with air traffic control radar systems, authorities said.

No aircraft were allowed to take off from airports in southern and central Sweden due to a massive geomagnetic solar flare storm causing problems for radar systems.

Ulf Wallin, press spokesperson at Swedavia, the organization managing Sweden's airports, told TT that airports at Landvetter in Gothenburg and Arlanda and Bromma in Stockholm were affected.

"Those airplanes that are in the air are allowed to land at the airports they're going to, but no planes are taking off," he said.

The problems began at around 3.30pm on Wednesday. An hour later, traffic had begun to return to normal, but it was not known when airports would be operating at full capacity again, said Per Fröberg, press spokesperson for Luftfartsverket, responsible for air traffic control in Sweden.

"[The solar storm] has meant that we haven't been able to see the airplanes on our radar screens. We are starting to get the systems up and running again but it's unclear when everything will be back to normal," he told the Aftonbladet tabloid

Space Weather Effects of Radio Waves

The associated CME observed with SOHO/LASCO/C2

Tropospheric Halo

Increased Geomagnetic Activity Requires Magnetic Reconnection Processes

Distance Sun – Earth = $1 \text{ AU} \approx 150 \text{ Million Kilometers}$

Solar Wind Impact on Earth's Magnetosphere

Comet Encke – Tail disruption through CME impact - HI 1 A, 20th April 2007

Period: 3.3 Years; Perihel: 0.338 AU FOV ~ 42.10⁶ km (0.28 AU)

Vourlidas et al., ApJ 2007

Aurora in the sky at Göttingen on 30 October 2003 and associated geomagnetic fluctuations.

- SOHO halo CME alert on 28 October
- Estimated arrival time based on CMEspeed
- Identification of CME arrival in ACE real-time data
- Aurora expected after 10 pm on October 30
- watched in my garden around midnight

Unprecedented Observations of CMEs with SOHO

Note the CME's three part structure!

Basic Properties

- Frequency:
 - 3.5 Events per Day in Maximum
 - o.2 Events per Day in Minimum
- Mass: 5x10¹² bis 5x10¹³ kg
- Velocities:
- 20 km s⁻¹ (sub-sonic) up to over
 2500 km s⁻¹ (sub-alfvénic)
- CMEs with V>400 km/s cause shocks
- Time until arrival at Earth: Hours (>12) to Several Days
- Kinetic Energy: 10²³ to 10²⁴ J

Stereoscopic Observations of the Sun-Earth System

Launch of STEREO on 25th October 2006, 20:52 L.T.

STEREO Orbit

Status of STEREO

December 2008 – First CME Tracked All Away Along the Sun-Earth Line

Davis et al., 2009

CME tracked Sun to Earth

STEREO-A:12/11/08 12:55:00 AM

Credit: NASA, deForest

STEREO SECCHI/EUVI A, B 304 Å and COR 2 A, B Observations

The Graduated Cylindrical Shell Modell

Sample GCS Modelling

500 × 400 pixels 5.2 kB 100%

CME Modelling: Dec. 12, 2008

Credit: E. Bosman

CMEs can be modelled as large-scale magnetic flux ropes

STEREO/SECCHI Consortium

Multi-Point Observations

High Resolution Observationswith SDO

Lateral expansion of CMEs - SDO/AIA 171

Credit: SDO/AIA

The associated low coronal EUV wave

2014-02-25 00:34:01 (21.1 nm, dimming 2960, seq 1) intensity 0.0 * 10 ^6

Near-Sun rapid CME-Evolution

Credit: SDO, SOHO

Flows Seen Over the Full Sun (SDO)

171 Å ∼0.6-0.9 MK

The Helophysics Observatory

AFFECTS Trailer

CME on 29 September 2013 - SDO, STEREO/SECCHI/COR2 & COR1 A observations

Enlargement of small-scale features

STEREO Ahead COR1

2013-09-29 22:40:24

Expansion of fine-scale features - Arrival times will depend on observer's position wrt CME SR

2013/09/29 23:54:00

AIA 304 - 2013/09/29 - 18:00:31Z

CME on 29 September 2013

CME Analysis – N. Mrotzek, HELCATS Team UGOE

GCS Modelling of Multipoint Observations

Position on Sun:

 $\Phi = 12^{\circ} \qquad \theta = 25.12^{\circ}$ Associated C1.2 Flare at: $\Phi = 33^{\circ} \qquad \theta = 10^{\circ}$

Geometrical parameter: $\alpha = 63^{\circ}$ $\gamma = -74.87^{\circ}$

 $\kappa = a/r = 0.54$

COR 2 A HI 1 A

GCS Modelling 2013-09-29 - N. Mrotzek, HELCATS Team UGOE

Forecast bases on 3D CME Modelling & CME Propagation

Which part of the CME hits earth?

NSTITUT FÜR

Aštrophysik Göttingen

- Assuming self similar expansion of the CME!
- Calculate Expansion factor using GCS parameters.
- Combining the EF with the arrival time in L1 we can calculate the distance of the APEX for this time.

Event from 29. Sep. 2013:

$$EF = \frac{h_{Earth}}{h_{Apex}} = \frac{v_{Earth}}{v_{Apex}} = 0.88$$

CME Kinematics 2013-09-29 – A. Pluta, N. Mrotzek, HELCATS Team UGOE

INSTITUT FÜR ASTROPHYSIK GÖTTINGEN

Final Drag fit

CME Kinematics 2013-09-29 – N. Mrotzek, HELCATS Team UGOE

CME Signature in ACE Solar Wind Data

SPP/WISPR/CGAUSS Team UGOE, M. Venzmer

ESA Space Weather Plans in SSA - Lagrange

SWE Space Segment Target

European Space Agency

•

Timeline

SSA SWE Lagrange Mission Roadmap

Imaging the solar wind with STEREO

Outflows in Coronal Hole (SDO)

193 Å ~1.4 MK

What is PSP?

- Goes to the last unexplored region of the solar system and enter the solar corona as close as 9.86 Rs
- Will answer fundamental questions of Heliophysics:
 - > The heating of the solar corona
 - > The origin, structure and evolution of the solar wind
 - > Origin of solar energetic particles

Investigations:

- > FIELDS: measurements of magnetic fields, AC/DC electric fields
- SWEAP: measurements of flux of electrons, protons and alphas
- > ISOIS: measurement of solar energetic particles
- > WISPR: measurement of coronal structures
- > Observatory Scientist

PSP Mission Scenario – Observations from 0.25 AU to 9.86 R_s

V_{PSP}~200 km/s V_{Helios}~70 km/s

A ROBE PLUG

Results from solar wind extrapolations (CGAUSS)

Helios structure selection

- 138 fast wind streams (V_{max})
- 184 slow wind streams (V_{min})

Extrapolation to 0.04 au

• Fast: $V_{max} = 689 \text{ km/s}$

• Slow:
$$V_{min} = 195 \text{ km/s}$$

Radial velocity distribution - Exponential regression fitting

What is WISPR (Wide Field Imager for Solar Probe Plus) Instrument Overview

3

Simulation of WISPR Observations During a 10 $\rm R_{s}$ $\rm PSP$ Perihelion

PSP and SO Orbit Plannings

SPP/WISPR Consortium

Conclusions

- Multipoint space observations have provided unique insights into heliospheric physics – what we call today the heliophysics observatory
- The solar wind outflow and CMEs are intimately connected to the photospheric magnetic fields
- Reliable space weather forecasts require a precise understanding of the underlying science – 3D topology, expansion, drag
- The challenging new missions Solar Probe, Solar Orbiter and Lagrange will certainly provide new breakthroughs

Hellas 2017 - Efcharisto

>> Heraklion info
History
Attractions
Beaches
Heraklion Map
Pictures
More info
>> Services

Herakilon Hotels

Heraklion Car Hire

Heraklion Taxi

Sing up to our newsletter and receive the latest news of heraklion-crete.org

Daedalus and Icarus

Daedalus personifies the development of the arts and crafts in the ancient world. He was the first architect, sculptor, master craftsman and inventor: devised many familiar tools such as the saw, axe, plum-line,drill and potters wheel. The construction of sails, masts and yards for ships was also included in his repertoire.

According to mythology Daedalus was the son of Euphalamos or Palamaonas (signifying a man with a craftsman's palms portending great dexterity) and mother Allieppi or Frasimedes who belonged to the house of Erechtheidon. Daedalus became famous in his time for his unsurpassable architectural skills and his beautiful sculptures.

It was said that the semi-god Heracles took the head of one of Daedalus' sculptures thinking that it was a real enemy. It is noteworthy that the ancient Greeks actually believed in mythology, as if it were true. Daedalus' workshop school was attended by many well known artists sculptors painters and

Heraklion History