

Morphology of local Luminous InfraRed Galaxies (LIRGs)

Alexandros Psychogyios^{1,2}

V. Charmandaris^{1,2}, L. Armus³, T. Diaz-Santos⁴

Department of Physics, University of Crete, Greece
 (2) National Observatory of Athens, Greece
 (3) SSC/Caltech, USA
 (4) Diego Portales University, Santiago, Chile

Psychogyios et al. 2016, A&A 591, A116 (2016)

HELLENIC ASTRONOMICAL SOCIETY

Content

- introduction
- analysis
- results
- summary

Historical overview

- 18th century : William Herschel search for 'nebulae'.
 - 1888 : Issac Roberts (nebular photography)
 - Hubble (1926) "Hubble tuning fork"

• Sandage, De Vaucouleurs, van den Bergh (tuning fork revision)

Introduction

extragalactic studies

how matter in the universe assembled into the structures

study the formation and evolution of galaxies (luminous beacons of the baryon content of the Universe)

why morphology

strongly related with M_{\star} and SFH of galaxies.

property key to unveil the evolution of galaxies.

what is morphology

describes how the galaxy's electromagnetic emission, as it is projected along the line of sight and at a specific wavelength, is distributed on an image.

Introduction

local Universe (Hubble Tuning-fork)

Elliptical

high-z Universe

irregular shapes

(U)LIRGs

- Emit in the FIR spectrum (Sanders & Mirabel 1996)
- Dominate the SFRD at z ~ I and at z ~ 2 (peak of galaxy assembly) Magnelli et al. 2013, Le Floc'h et al. 2005
 - Strongly related to the formation of massive ellipticals (Hopkins et al.2009)
 - Rare in local Universe but thousand times more common at high-z.

Interpreting non-parametric coefficients

Gini

indicates the relative distribution of galaxy pixels

traces the spatial distribution of any bright region

Sample

89 galaxies from GOALS (Armus et al. 2009)

0.009 < z < 0.088

B,I and H-band **HST** 5.8µm IRAC **Spitzer**

Method

constructing the segmentation map of a LIRG

Petrosian : sb = 20% sb circle

initial image

segmentation map

Motivation

• Quantify the morphology of local (U)LIRGs using HST optical to NIR imaging and search for clues of merging signatures via non-parametric coefficients.

- Reliability of non-parametric coefficients as a function of $\lambda.$ (optical to NIR)

Exploring correlations between the morphological indicators and properties of galaxies (sSFR).

Gini - M₂₀ plane

Visual classification of our sample (Haan et al. 2011) Expectation :

most of our galaxies should lie in the Mergers region according to their interacting morphologies

Results

Gini - M₂₀ plane in B-band

B-band

unobscured young stars star forming regions

2nd HEL.A.S summer school 2016

Most of galaxies are below the **Merger** line

Gini - M₂₀ plane in I-band

Gini - M₂₀ plane in H-band

Gini - M₂₀ plane in H-band

Gini -M₂₀ plane in L_{IR} bins

Gini - M₂₀ plane (aperture dependence)

Why the majority of (U)LIRGs don't lie inside the **Mergers** region as Lotz et al. 2004 suggested ?

studies used Gini- M_{20} to describe galaxy morphology i.e. Lotz et al. 2004 , Abraham et al. 2003, Hung et al. 2014

main difference : choice of the characteristic aperture to construct the segmentation map

aperture used to construct the segmentation map

0.7
1.0 Petrosian
1.5 radius
2.0

Gini -M₂₀ plane as a function of Petrosian radius

Gini -M₂₀ plane

- aperture dependence on the Gini-M₂₀ plane
- Be careful with the choice of the characteristic radius.
- The lines of the Gini-M20 plane should be modified according to the sample that we use.

Morphology and physical properties

Morphology and sSFR

Conclusions

I. Moving from the optical to NIR, we find that the median values of Gini increases while median values of M_{20} become more negative.

2. M_{20} can distinguish better systems formed by multiple galaxies from isolated and postmerger LIRGs, and its effectiveness increases with increasing wavelength. In fact, our multiwavelength analysis allows us to identify a region in the Gini- M_{20} parameter space where ongoing mergers live, regardless of the band used to calculate the coefficients.

3. L_R is not a defining physical quantity that controls where the (U)LIRGs lie in Gini- M_{20}

4. The choice of the characteristic radius for the construction of the segmentation map is crucial for the Gini- M_{20} plane.

5. The sSFR is positively correlated with the M_{20} that is measured in the mid-IR;

-starbursting galaxies appear more compact than normal ones – and it is anti-correlated with it if measured in the B band.

We interpret this as evidence of the spatial decoupling between obscured and unobscured star formation, whereby the ultraviolet/optical size of LIRGs that experience an intense central starburst is overestimated owing to higher dust obscuration towards the central regions.

Extras

Petrosian radius (R_P)

independent-distance way to describe the radial profile

 $sb_{annulus} = 20\% mean \ sb_{inner \ circle}$

