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What we will cover in this lecture

• The MHD equations


• Discretisation of the equations


• MHD waves


• The Godunov scheme


• Constrained Transport


• Introduction to the RAMSES code



The MHD equations



What is Magnetohydrodynamics (MHD)?

! Magnetohydrodynamics describes the behaviour of a plasma in large 
spatial and temporal scales. Specifically:


! It describes spatial scales larger than the Debye length:


! and temporal scales larger than the plasma and the cyclotron 
frequencies:



When can we use MHD?

! When the plasma is macroscopically neutral 
! When particle collisions are so frequent that the plasma is in a state of 

thermodynamical balance, so that Ti = Te. The collision frequency 
between ions and electrons can be expressed as:


Which means that the MHD approximation is valid when the electron/ion 
temperatures are small, and/or the mean density is large.


! Here we will talk about ideal, classical MHD, which means that we will be 
ignoring relativistic effects, friction and all the sources or losses of 
energy in the plasma.



Plasma ne 
(cm-3)

T (K) λD (cm) lf

Earth’s ionosphere 106 103 0.21 ~ 1km
Earth’s magnetosphere 1 107 6.9 103 (electron 

gyroradius) ~5km
Solar wind 1 105 2.18 103 ~ 1AU

Ionised interstellar 
medium

10-1 104 2.34 103 ~ 0.01pc

Intergalactic medium 10-6 106 6.9106 ~ 13 Mpc 

The mean free path of a particle (the mean distance a particle can travel 
until it encounters another particle) 


lf = uth/uei

where uth the thermal velocity of the charges and uei the collision frequency

is another way to examine the MHD approximation

Characteristics of some physical systems



Solar corona (n~1010 cm-3, T~106 K, lf~8 Rsun) Cosmic rays (n~10-8 cm-3,lf~1AU-1kpc)

Molecular clouds (n~104 cm-3, T~10 K, lf=20km)The warm interstellar medium (n~10-2 cm-3, T~8000 K, lf=20km)  

Which of these systems can we describe with MHD?

Image credit: Daniele Boffelli

Image credit: NASA/JWSTImage credit: NASA/JWST

Image credit: P. Horálek/ESO



G A L A X I E S  A R E  M A G N E T I S E D

Left: Magnetic field from FIR polarisation (this work)  
Right Magnetic field from radio polarisation (Fletcher et al.2011)

M51 from Serrano-Borlaff et al. 2021 



T H E  M A G N E T I C  F I E L D  O F  T H E  M I L K Y  W AY

Planck, BlastPol, Faraday rotation

P L A N C K  D U S T  P O L A R I Z AT I O N  M A P   
F R O M  H T T P S : / / W W W. I A S . U - P S U D. F R / S O L E R / P L A N C K H I G H L I G H T S . H T M L

FA R A D AY  R O TAT I O N  S K Y  F R O M  O P P E R M A N N  E T  A L .  2 0 1 2

Points to the field being 
dynamically important 
(e.g. Planck XXXII, 2014)

Shows a quadrupole in high 
latitudes and a coherent 
azimuthal field in the disk



The MHD equations in conservative form

1. Conservation of mass:
∂ρ
∂t

+ ∇ ⋅ [ρu] = 0

2. Momentum conservation:
∂ (ρu)

∂t
+ ∇ ⋅ [ρuu − BB + P*] = 0

3. Energy conservation:
∂E
∂t

+ ∇ ⋅ [(E + P*)u − B(B ⋅ v)] = 0

P* = Pth + B2/2

E = ρu2 /2 + e + B2/2

4. Flux conservation:
∂B
∂t

= − c∇ × E

∇ ⋅ B = 0

Maxwell’s equations

J = σ (E +
u × B

c )Ohm’s law:

σ → ∞For a fully conducting plasma: cE = u × B

∂B
∂t

− ∇ × (u × B) = 0

+ Equation of state 



The MHD equations in non-conservative form

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0

∂(ρu)
∂t

+ ∇ ⋅ (ρuu) = − ∇Pth +
1

4π
∇ × (∇ × B)

∂e
∂t

+ ∇ ⋅ (eu) = −
p
ρ

∇ ⋅ u

∂B
∂t

− ∇ × (u × B) = 0

+ Equation of state 



Equation of state

To close the system we need an equation of state: P=f(ρ)


We usually adopt the ideal gas law:

P=nkT 

In thermal equilibrium, each internal degree of freedom has energy kT/2.

Thus, the internal energy density for an ideal gas with m internal degrees of freedom is


e = nm(kT/2) 

Combining the above:

P = (γ-1)e , where γ = (m+2)/m 

‣ For monoatomic gas (H), γ=5/3 (m=3)

‣ For diatomic gas (H2), γ=7/5 (m=5)


Also, when the radiative cooling time <<  the dynamical time 

it is common to use the isothermal EOS P = csound2 where csound is the isothermal sound


speed.


In some circumstances, an ideal gas law is not appropriate, and must use more

complex (or tabular) EOS (e.g. for degenerate matter)



Solving the MHD 
equations numerically



Lagrangian: 
Moving volume element

Eulerian: 
Static volume element

Approaches to solving the MHD equations
Hybrid 

(moving-mesh, 
Meshless Finite Volume)

RAMSES

Athena++


FLASH

…

Gadget

SPHENIX


Bonsai-SPH

…

AREPO

GIZMO

D
Dt

=
∂
∂t

+ ∇ ⋅ u
Lagrangian derivative Eulerian derivative

B’edorf & Zwart 2019

Springel 2010
SPH

Hopkins 2015



Some basic concepts:

Truncation error 
Numerical algorithms approximate the true 

(analytic) solution. 
The difference between the true and the 

approximate solution is called truncation error. 
The TE is not related to the finite precision of 

numbers on a computer (round-off error). 

Round-off error 
Not all real numbers can be represented by 

the machine. 
If floating point operations result in a number 

that cannot be represented, some sort of 
rounding must be used. 

It can be shown that the relative error can be 
bounded by a very small number ε, called 

“machine precision”: 

"
|x − x′�|

|x |
< ϵ

Consistency: truncation error must decrease as resolution increased. 
Convergence: numerical solution should approach analytic solution as 

grid spacing Δx decreases (numerical resolution increases). 
Stability: round-off error must remain small and bounded.

Discretisation: In Eulerean methods, we divide the computational space 
of length L in a number of cells: Nx, Ny, Nz per direction, so that we have 

a resolution of Δx=L/Nx, Δy=L/Ny, Δz=L/Nz 



Simple finite differences

The obvious approximation to a derivative is taking the difference:

Here, the leading term in the truncation error is O(h), so the method is 

“first-order accurate” (think of Taylor series expansion).


In addition to the truncation error, there will be round-off error in evaluating the derivative:


‣ when x >> h, x+h inaccurate

‣ when evaluating f(x), the error is magnified.


Round-off error of this simple form for the derivative is at best sqrt(ε)

f′�(x) ≃
f(x + h) − f(x)

h

x x+hx-h

f



Centered differences

A significantly more accurate approach is taking a centred difference:

In this case, the leading term dropped in the Taylor expansion is O(h2), which can 
lead to order of magnitude decrease in truncation error. 


We can get a second-order scheme almost for free!


Using Taylor series, it is also easy to build successively higher-order approximations 
for the derivative (careful, only for smooth functions!)

e.g. PENCIL code (Pencil Code Collaboration 2021).

f′�(x) ≃
f(x + h) − f(x − h)

2h

However, the solution can still be unstable when there are shocks! 
Oscillations near discontinuities often appear, and methods can easily go catastrophically unstable:


We need to account for the physics of the discontinuity

x x+hx-h

f



and we know there are some shocks in the ISM!



Hyperbolic conservation laws

U =

ρ
ρux
ρuy
ρuz

By

Bz

E

∂U
∂t

+
∂F
∂x

= 0

F =

ρux

ρu2
x + P* − B2

ρuxuy − BxBy

ρuxuz − BxBz

Byux − Bxuy

Bzux − Bxuz

(E + P*)ux − Bx(Bxux + Byuy + Bzuz)

The MHD equations: can be written in the form

Where

We can rewrite as 
∂U
∂t

+
∂F
∂U

∂U
∂x

= 0

which is a hyperbolic PDEand

Hyperbolic PDE: 
A hyperbolic Partial Differential Equation (PDE) of order n  is a well-posed initial value problem for its first 

n-1 derivatives.  The best example of a hyperbolic PDE is the wave equation: 

"
∂2u
∂t2

= c2
w

∂2u
∂x2

∂ρ
∂t

+ ∇ ⋅ [ρu] = 0

∂ (ρu)
∂t

+ ∇ ⋅ [ρuu − BB + P*] = 0

∂E
∂t

+ ∇ ⋅ [(E + P*)u − B(B ⋅ v)] = 0

∂B
∂t

− ∇ × (u × B) = 0
For a 1D problem: 

"∇ ⋅ B = 0 ⇒ Bx = 0

∂F
∂U

If is constant

we have a linear hyperbolic PDE



At any later time, the solution is just the initial condition displaced by uxt. 
In particular, the density field moves with flow without changing shape (advection). 
Even discontinuous solutions are allowed for the density, which just move with flow 

(contact discontinuties).

Advection (entropy wave)
If P and ux are constant, it is easy to find time-dependent solutions


to the hydro equations representing advection (entropy wave).


U =

ρ
ρux
ρuy
ρuz

E

F =

ρux

ρu2
x + P*
ρuxuy
ρuxuz

(E + P*)ux

∂F
∂U

= ux

Fluid equations become 
∂U
∂t

+ ux
∂U
∂x

= 0

Which has solution:
 f(x, t) = f(x − uxt,0)



‣ When α1/α0 << 1; waves are small amplitude and remain linear

‣ When α1/α0 > 1, waves are large amplitude and will become nonlinear 

Sound waves
Hyperbolic PDEs admit solutions of the form:

WAVESα = α0 + a1 exp(ikx − iωt)

We substitute the solution for plane waves into the hydrodynamic equations,

assuming a uniform homogeneous background medium, so that


α0=constant and v0=0. We keep only linear terms, so the fluid equations become:

−iωρ1 = − iρ0k ⋅ u1

−iωv1 = − i
1
ρ0

kP1

−iωP1 = − iγP0k ⋅ u1

Linear system with constant 
coefficients. 

Requiring det(A)=0 yields:

ω3(ω2 − c2
soundk2) = 0

c2
sound =

γP
ρ

5 modes: 3 advection modes and 2 sound waves with ω/k = ± csound



MHD waves
If we repeat the exercise of inserting the wave solution into the MHD equations,

assuming a uniform homogeneous background medium, and keeping only linear 

terms, we get a much more complicated dispersion relation:

[ω2 − (k ⋅ ca)2] [ω4 − ω2k2(c2
a + c2

sound) + k2c2
sound( k ⋅ ua)2] = 0

Now we have three modes instead of one:

‣ Alfven wave propagates at ca

‣ Slow and fast magnetosonic waves propagating at csound and cf


The entropy mode is also present in both cases!

k∥

Alfvén waves  
Represent propagating transverse


perturbations of the B-field.

u uu

Fast and slow magnetosonic 
Compressible perturbations of both field and gas.


Fast mode has field and gas compression in phase

Slow mode has field and gas compression out of phase.

Parallel slow and fast
 Perpendicular only fast


k∥
k⊥



Summary of MHD waves
J =

∂F
∂U

By calculating the 7 eigenvalues of the Jacobian matrix:
Propagation velocities of the various MHD waves 

λf = u ± cfλs = u ± csλa = u ± ca λe = u

Fast magnetosonic waves: 
longitudinal waves with variations in 

pressure and density  
(correlated with magnetic field)

Slow magnetosonic waves: 
longitudinal waves with variations in 

pressure and density  
(anti-correlated with magnetic field)

Alfvén waves: 
transverse waves with no variation in 

pressure and density

Entropy waves: 
contact discontinuities with no variation 

in pressure and velocity

c2
sound =

γP
ρc2

a =
B2

4πρ

c2
s =

1
2 (c2

sound + c2
a) − (c2

sound + c2
a)2 − 4c2

soundc2
a,xc2

f =
1
2 (c2

sound + c2
a) + (c2

sound + c2
a)2 − 4c2

soundc2
a,x



‣ The differences between cell-averaged values at each grid interface define a set of 
Riemann problems (evolution of initially discontinuous states).


‣ The solutions of these Riemann problems averaged over each cell give the time 
evolution of the cell-averaged values, until the MHD waves from one interface cross 
the cell and interact with the next one. 


‣ This is called the “Courant-Friedrichs-Lewy” condition:                                             
Δt must be less than Δx/(u+c).


‣ We don’t actually need to solve the Riemann problem exactly. We just need to 
compute the state at the location of the interface in order to compute fluxes.

Un+1
j − Un

j

Δt
= −

Fn+1/2
i+1/2 − Fn+1/2

i−1/2

Δx

x

Godunov scheme (first-order)

Then the time-averaged flux function is 
computed using the self-similar solution of the 

inter-cell Riemann problem: 

The system of conservation laws is discretised as:

i-1/2 i+1/2i

x
Godunov (1959)

U*i+1/2(x /t = 0) = ℛ𝒫(Un
i , Un

i+1)

Fn+1/2
i+1/2 = F(U*i+1/2(0))

This defines the Godunov flux:

Fn+1/2
i+1/2 = F*(Un

i , Un
i+1)i-1/2 i+1/2i

Euler: 3 waves

Advection: 1 wave

MHD: 4 waves



‣ For pure hydrodynamics of ideal gases, exact/efficient nonlinear Riemann solvers are 
possible.


‣ In MHD, nonlinear Riemann solvers are complex because:

1. There are 3 wave families in MHD, so seven characteristics

2. In some circumstances, 2 of the 3 waves can be degenerate (e.g. ca = csound )

3. The MHD equations are not strictly hyperbolic (Brio & Wu 1988, Zachary & Colella 

1992)


‣ In practice, MHD Godunov schemes use approximate and/or linearised Riemann 
solvers.


‣ Since the solution of the Riemann problem only impacts the solution through the 
states of two neighbouring cells, we consider approximations where only one wave 
propagates in each direction (two-wave solvers).


‣ The solution will have an intermediate state � 


It remains only to specify the wave speeds, and it is in this specification that the various 
two-wave Riemann solvers differ.


Qm =
F(QR) − F(QL) − c2QR + c1QL

c1 − c2

Riemann solvers



The LLF (Local Lax-Friedrichs) Riemann solver

The Lax-Friedrichs method assumes that both waves have the 
same speed, c , in opposite directions. Then:

Qm =
F(Qr) − F(Ql)

2c
−

Qr + Ql

2

The local Lax-Friedrichs admits different values of c at 
different interfaces

For the method to be stable, one should choose the highest 
velocity of the Riemann solution across the boundary.

However, this causes significant diffusion, because it damps 
the slower wave.



The HLL-type Riemann solvers

HLL-type Riemann solvers rely only on computing the fastest wave speed.


Define cf as the fast magnetosonic speed and the left and right going waves as:


Use generic Rankine-Hugoniot relations with one single intermediate state U*

and corresponding flux F*, we get the HLL flux:


� 


� 


� 


The Lax-Friedrich flux is obtained as a particular case with u*=uR=-uL

uL > 0 : F*(UL, UR) = FL

uR < 0 : F*(UL, UR) = FR

uL < 0 and uR > 0 : F* =
uRFL − ulFR + uLuR(uR − uL)

uR − uL

uL = min(uL, uR) − max(cf,L, cf,R) uR = max(uL, uR) − max(cf,L, cf,R)



The problem with the induction equation in more 
dimensions

∇( B2

2
δij − BiBj) + (∇ ⋅ B) B = − J × B

The conservative form of the induction equation uses 
the divergence of the Maxwell stress tensor:

If B has no divergence, then the divergence of the Maxwell stress tensor equals 
the Lorenz force and we are fine.


BUT if magnetic monopoles are forming due to numerical truncation errors, the 
induction equation doesn’t remove them. Then when we derive the induction 

equation, we have a spurious force:

Non-zero divergence accumulates, giving rise to a spurious force parallel to the field

lines. In some cases, div B will grow without bounds (numerical instability)!


The challenge of computational MHD is to design divB preserving schemes.

∂t(ρu) + ∇(ρuu −
1

4π
BB) + ∇(P*) = − (∇ ⋅ B)B



Many schemes have been proposed to get rid of the divergence issue in cell-centered 
approaches:


‣ Powell’s 8-wave scheme (Powell 1999) explicitly introduces magnetic monopole 
and magnetic current by adding source terms to the momentum equation and to 
the induction equation. So we have 8 characteristics, with a “divB” wave.

The monopoles are advected away, but the jump conditions at the cell interfaces 
are incorrect.


‣ The projection scheme (Brackbil & Barnes 1980) computes the monopole (magnetic 
charge, m) for each cell and solves a Poisson equation ΔΦ=m, and use the gradient 
of Φ to correct the field.

The magnetic field is close to the true, but Poisson equation solving is time-
consuming. Also, the correction causes perturbations in the pressure.


‣ Dedner’s diffuson scheme (Dedner et al. 2002) is a variant of the projection scheme, 
with an hyperbolic div B cleaning step.


‣ Combination of the above (Crockett et al. 2005)

The problem with the induction equation in more 
dimensions



Constrained Transport

Cell-centered mass, momentum, energy

but: face-centered magnetic field

Φ(i + 1/2,j, k) =
1
S ∫ Bx(y, z)dydz

S = [yi−1/2, yi+1/2] × [zi−1/2, zi+1/2]

B(i,j,k-1/2)

U(i,j,k)
B(i+1/2,j,k)B(i-1/2,j,k)

B(i,j,k+1/2)

B(i,j+1/2,k)

B(i,j-1/2,k)

Ey(i+1/2,j,k+1/2)

Ey(i+1/2,j,k-1/2)

Ez(i+1/2,j+1/2,k)
Ez(i-1/2,j+1/2,k)

Each of the line integrals of the electric field is shared by

two faces, but appears with opposite sign in the time update formula


So the total flux (div B) across each cell bounding surface vanishes exactly!

Yee (1966)

Evans & Hawley (1988)

We define the magnetic flux on cell faces, for example:

And take a line integral of the electric 
field along cell edges, for example:

ℰi+1/2, j+1/2,k = − ∫
z(k+1/2)

z(k−1/2)
Ez(x(i + 1/2), y( j + 1/2))dz

The magnetic flux at each face is updated from 
the circulation of the electric field:

dΦi+1/2, j,k

dt
= ℰi+1/2, j+1/2,k − ℰi+1/2, j−1/2,k − ℰi+1/2, j,k+1/2 + ℰi+1/2, j,k−1/2

∇ ⋅ B = lim
ΔV→0

1
ΔV ∮S=∂ΔV

B ⋅ n dS



Lagrangian: 
Moving volume element

Eulerian: 
Static volume element

Advantages/disadvantages of each method

Hybrid 
(moving-mesh)

Riemann solvers are great for capturing shocks!

Easy to implement "∇ ⋅ B = 0

Naturally Galilean-invariant Truncation errors depend on 
velocities

Smears out shocks and 
discontinuities

Hard to implement "∇ ⋅ B = 0 Hard to implement "∇ ⋅ B = 0

Naturally Galilean-invariant

Choose a code according to the needs of your problem!



The RAMSES code 
(Teyssier 2002, Fromang et al. 2006)



Features of the code:

• High-order Godunov scheme 


• Various Riemann solvers for MHD, including LLF and 
HLLD


• Staggered mesh for the magnetic field with Constrained 
Transport

The original, first-order Godunov scheme is very diffusive 
van Leer (1979) developed a second-order Godunov method 

where the flux function is approximated using a predictor-corrector scheme



Features of the code we didn’t have time 
for today:

• Adaptive Mesh Refinement 


• MPI parallelisation scheme


• Gravity (Poisson) solvers


• Particle Mesh for collisionless particles 


• Sources/losses of energy 


• Non-ideal MHD


• Radiation 


• Sub-grid models



Ready to run some MHD simulations?
Credit: A. Konstantinou Credit: P. Hennebelle


