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Visible light

Sagittarius
There is too much extinction in the optical wavelengths so Sagittarius A is only 

visible in other wavelengths, such as infrared, radio and X-rays.
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The Milky Way center

One can model the orbits of 
these stars and solve for the 
distance to Sgr A*, its exact 

location in the sky, and mass. 

Gillessen et al.  
2017
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The Milky Way center

D = 8.3kpc

The distance to  
Sgr A* is  

determined to be 

It is a simple exercise to estimate the mass of Sgr A* from  
Kepler’s 3rd law and the size and periods of the orbits.

This is close to the properly measured value of ∼ 4.28 × 106M⊙

while the S2 star on  
closest approach 

gets within                 .∼ 100AU

M =
a3

T2
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The Milky Way center

There is something with a mass of   
that has a size that is less than 100 AU, that resides at the center 

 of the Milky Way and can only be a Black Hole.

∼ 4.28 × 106M⊙

The S2 star on  
closest approach 
gets to                  , 
while other stars  

can get even closer.

∼ 100AU

The 2020 Nobel Prize in Physics "for the discovery of a supermassive 
compact object at the centre of our galaxy", was awarded to Andrea 

Ghez, Reinhard Genzel, and Roger Penrose.
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• These light-cones define the causal   
structure of the spacetime and 

define the regions of the spacetime 
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• For a flat spacetime all regions are available
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2

gab
·xa ·xb

which can then be used to write a Hamiltonian for the photons 

ℋ = ∑ pa
·xa − ℒ where the momenta are defined as pa =

∂ℒ
∂ ·xa

The problem in this way becomes one of classical mechanics.
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Equations of motion in an axisymmetric spacetime:

An axisymmetric spacetime looks the same as time passes or if we 
rotate it with respect to some specific axis. This means it has two 
symmetries, one w.r.t. time translations and one w.r.t. rotations.    

These symmetries are associated to two Killing vectors ξ, η
One can choose  coordinates that are adjusted to these 

symmetries. This means that the metric will be  , 

while    and   .

t, ϕ
∂gab

∂t
=

∂gab

∂ϕ
= 0

ξa = δa
t ηa = δa

ϕ

In addition, there are conserved quantities associated to these 
symmetries. Particles have a conserved energy    
and a conserved angular momentum   

E = − ξapa = − pt

Lz = ηapa = pϕ
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ℋ =
1
2 [grr

·r2 + gθθ
·θ2 + Veff(r, θ)]Looking at the Hamiltonian, 

everything is a function of  
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The equations of motion seem complicated, but things are simpler 
than they look at first glance.

only    r, θ
constants of motion. This allows us to split the system in two 
“independent” parts, the    part and the    part.r, θ t, ϕ

The  motion can also be studied with the help of the  . r, θ Veff(r, θ)

in addition to having two 
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Veff =
gϕϕ + b2gtt

gϕϕgtt
= −

r2 − b2(1 − 2M/r)
r2(1 − 2M/r)

The figure shows    for 3 
values of . The allowed region 
is for .

Veff

b
Veff ≤ 0

In the Schwarzschild case this gives    and .bph = 3 3M rph = 3M

rph

The photon orbit is the unstable 
circular orbit at the peak of the 
potential determined by the 
conditions, 

Veff = 0,
dVeff

dr
= 0

A photon with this impact parameter will asymptotically get to .rph = 3M
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The case of the Kerr rotating Black Hole is a little more complicated.
We no longer have spherical symmetry. We only have axisymmetry. 

On the equatorial plane    we 
can treat things as 1D. We can still 
write a   and find the unstable 
circular photon orbits.

θ = π/2

Veff

In this case though, we will have two 
such orbits, one co-rotating and 
one counter-rotating with the BH.

a = 0.8M

Dolan, PRD82, 104003 (2010)



Photon orbits around Black Holes
A more general case - the Kerr spacetime:

And one can have even more general orbits off the equatorial plane 
described by a more general  Veff(r, θ)



Photon orbits around Black Holes
A more general case - the Kerr spacetime:

And one can have even more general orbits off the equatorial plane 
described by a more general  Veff(r, θ) Veff > 0

Veff > 0



Photon orbits around Black Holes
A more general case - the Kerr spacetime:

And one can have even more general orbits off the equatorial plane 
described by a more general  Veff(r, θ)

These are no longer circular orbits. Instead 
they are spherical photon orbits.

Veff > 0

Veff > 0



Photon orbits around Black Holes
A more general case - the Kerr spacetime:

And one can have even more general orbits off the equatorial plane 
described by a more general  Veff(r, θ)

These are no longer circular orbits. Instead 
they are spherical photon orbits.

Veff > 0

Veff > 0The most extreme case 
of those being the polar 
orbits, that form a full 
sphere.

Dolan, PRD82, 104003 (2010)
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A brief history of imaging Black Holes:

J. Bardeen Jean-Pierre LuminetIt was first James Bardeen in 
the early 1970s that gave 
the mathematical definition 
of the shadow of a BH in 
terms of the two impact 
parameters , where  

  and 
(α, β)

α → pϕ/pt = − b
β → pθ /pt

While in the late 1970s Jean-Pierre Luminet 
gave the first image of an accretion disc around 
a Black Hole. 

maximally rotating BH



What is the shadow of a Black Hole?



What is the shadow of a Black Hole?
We can think of imaging a Black Hole in two equivalent ways:  
 1) Light from a source comes to the observer from the direction of the 
BH , or 2) we cast a photon trajectory  
towards the BH and see if it hits a light source. 



What is the shadow of a Black Hole?
We can think of imaging a Black Hole in two equivalent ways:  
 1) Light from a source comes to the observer from the direction of the 
BH , or 2) we cast a photon trajectory  
towards the BH and see if it hits a light source. 
This is the technique of backward ray-tracing. 



What is the shadow of a Black Hole?
We can think of imaging a Black Hole in two equivalent ways:  
 1) Light from a source comes to the observer from the direction of the 
BH , or 2) we cast a photon trajectory  
towards the BH and see if it hits a light source. 
This is the technique of backward ray-tracing. 

In this way, we can determine whether a 
photon is lost inside the horizon of a BH 
and therefore forms part of the shadow 
or the photon is simply scattered and 
thus provides a possible source of light.



What is the shadow of a Black Hole?
We can think of imaging a Black Hole in two equivalent ways:  
 1) Light from a source comes to the observer from the direction of the 
BH , or 2) we cast a photon trajectory  
towards the BH and see if it hits a light source. 
This is the technique of backward ray-tracing. 

In this way, we can determine whether a 
photon is lost inside the horizon of a BH 
and therefore forms part of the shadow 
or the photon is simply scattered and 
thus provides a possible source of light.



What is the shadow of a Black Hole?



What is the shadow of a Black Hole?

Gralla et al. PRD100, 024018 (2019)



What is the shadow of a Black Hole?

Gralla et al. PRD100, 024018 (2019)



What is the shadow of a Black Hole?

Gralla et al. PRD100, 024018 (2019)



What is the shadow of a Black Hole?
The mathematical shadow:



What is the shadow of a Black Hole?
The mathematical shadow:



What is the shadow of a Black Hole?
The image of a thin accretion disc:



What is the shadow of a Black Hole?
The image of a thin accretion disc:



What is the shadow of a Black Hole?

Observer on the equatorial plane

The image of a thin accretion disc:



What is the shadow of a Black Hole?

Observer on the equatorial plane

The image of a thin accretion disc:



What is the shadow of a Black Hole?

Observer on the equatorial plane

Observer at some inclination off the equatorial

The image of a thin accretion disc:



What is the shadow of a Black Hole?

Observer on the equatorial plane

Observer at some inclination off the equatorial

The image of a thin accretion disc:



What is the shadow of a Black Hole?

Observer on the equatorial plane

Observer at some inclination off the equatorial

The image of a thin accretion disc:
There is some degree of  

asymmetry.  
This BH is rotating.
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The image of a thick accretion disc:

Observer on the equatorial plane

This BH is also rotating.
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What is the shadow of a Black Hole?

• The BH shadow is the result of the combination of an 
absorbing surface (the horizon) and the existence of the 
unstable spherical photon orbits. 

Summary on shadows:

• The size of the shadow is determined by the impact parameter 
of these spherical photon orbits, and is essentially the angular 
size of these orbits as seen at infinity.

• For a non-rotating Black Hole that shadow is circular and its 
size is equal to .3 3M ≃ 5.2M

• Rotating Kerr Black Holes have an approximately circular 
shadow for a wide range of rotations, that is also close to .5.2M

• In the end, the image of a BH also depends on the source of 
light and is not just the mathematical shadow.  
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The Black Hole in Sgr A*
• We have very strong evidence from 

astrometry for a very massive very 
compact object at the center of the 
Milky Way.

• The EHT telescope has provided 
further evidence for this very 
massive compact object, in good 
agreement with astrometry.

• There are indications that the 
observed compact object may have 
a horizon, but this is not definitive 
yet, as it is very hard to prove.


