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GALAXY FORMATION AND EVOLUTION

= The Universe in the LambdaCDM paradigm.
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GALAXY FORMATION AND EVOLUTION

= We focus on disk galaxies (Sa-Sc).
= Masses ~ or < 1012M,,,, (Ms~or < 1010-5M_.,))

= Star forming

= Gasrich

» Star formation

= Perturbation
= Cold-dense gas

https://ui.adsabs.harvard.edu/abs/2022Natur.601..329S/abstract

= New gas from inflows
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= Collapse of molecular clouds:

= Gas consumption + heating by SNe

= Chemistry of the disk as a proxy
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GALAXY FORMATION AND EVOLUTION

MINOR MERGERS

= In the current Universe the galaxies
grow mainly through accretion of
smaller galaxies (satellites).

- Antila Dwarf

= Minor mergers can bring gas to
galaxies and also perturb the thin
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GALAXY FORMATION AND EVOLUTION

GAS INFLOWS
= Galaxies are connected through filaments
. N in the cosmic net.

= Cold gas flows from the intergalactic
medium to galaxies through theses
filaments (cold flow).

= Galaxies above the virial shock mass stop
P the cold flow and quench.

Dekel & Birnboim 2006
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RESULTS FROM SIMULATIONS

SEMI-EMPIRICAL MODELS

= Galaxy chemistry evolution models try
the observed Galaxy chemistry from bz 3’
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RESULTS FROM SIMULATIONS

SELF-CONSISTENT SIMULATIONS

= Both isolated and cosmological simulations, when
including hydtrodynamics should recover results from
semi-empirical models.
= Require of a large amount of CPU time
= Subgrid physics (resolution limitations)
= Star formation history arises naturally
= Chemistry evolution is “subgrid-physics dependent”
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RESULTS FROM SIMULATIONS

SELF-CONSISTENT SIMULATIONS

= Simulations tell us that any minor merger
should affect the galactic disk if enough
massive and close to the disk

= The LambdaCDM predicts (confirmed by
simulations) that minor mergers are
usual in disk galaxies and so the disks
are constantly perturbed

= Is the Milky Way an exception?
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We know that many satellites accompanied the MW for almost the last 10 Gyr
We see gas and dust inside the disk and also recent star formatio
We know the disk has two components, one thin, one thick

There is a clear bimodality in the disk chemistry
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THE MILKY WAY FORMATION HISTORY

= We only see an snapshot of the MW formation
and evolution history: we need to do Galactic
Arxchaeology

= The events that shaped the MW galaxy should
be fossilized in the stellar kinematics and
chemistry, and also in its morphology (spiral
arms and bar).




THE MILKY WAY FORMATION HISTORY

= Accretion history from stellar kinematics

LETTER 20
https://doi.org/10.1038/s41586-018-0625-x

The merger that led to the formation of the Milky
Way’s inner stellar halo and thick disk

Amina Helmi'*, Carine Babusiaux®?, Helmer H. Koppelman!, Davide Massari!, Jovan Veljanoski' & Anthony G. A. Brown*

Galactic Archaeology

Combining Gaia data and other surveys it has been possible to study the motion, chemical
composition, age, and spatial distribution of stars in the Galaxy inner halo.
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THE MILKY WAY FORMATION HISTORY

= Accretion history from stellar kinematics

13 Gyr
[Fe/H =-1.3
[o/Fe] = 0.22
10 Gyr
[Fe/H] =-0.9
. [o/Fe] =0.13
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Our galaxy merged Gaia-Enceladus

The inner halo seems to be dominated by stars belonging to
another galaxy than the Milky Way. The current hypothesis is that
both galaxies merged 10Gyr ago. The mass of Gaia-Enceladus
was 7z of that of the MW

~10 Billion years ago
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THE MILKY WAY FORMATION HISTORY

= Sagittarius stellar stream (among many others recently discovered)

Counts
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The Sagittarius stream in Gaia eDR3

2021 and the origin of the bifurcations
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THE MILKY WAY FORMATION HISTORY

= Sagittarius stellar stream (among many others recently discovered)

2022

Revisiting a disky origin for the faint branch of the Sagittarius stellar stream

PIERRE-ANTOINE ORIA,' RODRIGO IBATA,' PAU RaMOs,! BENOIT FAMAEY 2! AND RAPHAEL ERRANI'

1 Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France
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THE MILKY WAY FORMATION

= Star Formation history from disk chemistry

When the Milky Way turned off the lights: APOGEE provides
evidence of star formation quenching in our Galaxy

M. Haywood!, M. D. Lehnert?, P. Di Matteo!, O. Snaith?, M. Schultheis?, D. Katz!, A. Gémez'
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THE MILKY WAY FORMATION

2019 Star Formation History from CMD diagrams

HISTORY

NATURE RESEARCH HIGHLIGHTS natqre s

International journal of science

~

The cosmic drama that helped to build the Milky Way

Stellar baby boom added a slew of stars to the Galacy’s disk
R. Mor, A. Robin, F. Figueras, S. Roca-Fabrega, X. Luri
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Star formation history of the galactic disk

Combining distances, magnitudes, and colors of all observed stars up to a defined magnitude
we have been able to trace the possible star formation history of the galactic disk’s stars.
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THE MILKY WAY FORMATION HISTORY

= Star Formation History from CMD diagrams

A strong star formation burst 2-3 Gyrs

The impact of a small satellite with the Galactic
disk was the most probable origin of the star
formation burst that produced more than the 50% of
stars in the current MW galactic disk. It was the
origin of the thin disk.
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THE MILKY WAY FORMATION HISTORY

2020 " Star Formation History from CMD diagrams

The recurrent impact of the Sagittarius dwarf galaxy
on the star formation history of the Milky Way disc

Tomas Ruiz-Lara!>*, Carme Gallart!-2, Edouard J. Bernard?, and Santi Cassisi*’

Three star formation bursts in the galactic thin disk
well correlated with Sagittarius dwarf pericenters

The recent determination of the Sagittarius dwarf galaxy recent
pericenters allowed researchers to set a correlation between
those and star formation bursts derived from CMD diagrams.

These works confirmed that the Sagittarius dwarf strongly
perturbed the disk at least three times in the last 6 Gyzrs.
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THE MILKY WAY FORMATION HISTORY

= Gas inflow history using Galaxy Chemistry Evolution models: Lithium

The bi-modal "Li distribution of the Milky Way’s thin-disk dwarf 5 100
stars l_E.) 0 — e e g0
w e s °
2021 The role of Galactic-scale events and stellar evolution
S. Roca-Fabrega'-*, F. Llorente de Andrés®3, C. Chavero?, C. Cifuentes? and R. de la Reza’ — SFR2b  --- SFR_Ob
SFR_1b Data

Lithium is atypical, it is not
produced in stellar cores

Lithium is an element that is
produced and destroyed in the
external layers of stars, or in the
intergalactic medium. Also, is one
of the only elements that were

produced in the primordial _
nucleosynthesis. This makes it a 0.0 0 5 4 6 3 10 00 05 10 18 >0 o5
perfect tracer of gas inflow history. Age Param (Gyr)
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THE MILKY WAY FORMATION HISTORY

= Gas inflow history using Galaxy Chemistry Evolution models: Other tracers

Rapid early gas accretion for the inner Galactic disc

2022

Owain Snaith!, Misha Haywoodl’ 2 Paola Di Matteo!-2, Matthew Lehnert**, David Katz!, and Sergey Khoperskov3’4’ 1
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THE MILKY WAY FORMATION HISTORY

= A highly perturbed galactic disk (Gaia kinematic data)

LETTER 20

https://doi.org/10.1038/s41586-018-0510-7

A dynamically young and perturbed Milky Way disk

T. Antoja'*, A. HelmiZ, M. Romero- Gémez!, D. Katz?, C. Babusiaux®#, R. Drimmel®, D. W. Evans®, F. Figueras!, E. Poggio®’,
C. Reylé8, A. C. Robin®, G. Seabroke® & C. Soubiran!'®
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A possible explanation: a

small galaxy (Sagittarius )
caused ‘snail shell’ structure
in our part of the MW. The
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THE MILKY WAY FORMATION HISTORY

= A highly perturbed galactic disk (Gaia kinematic data)

Footprints of the Sagittarius dwarf galaxy in the Gaia data

Confirmation

by isolated °t 2018

ga].a.XY . . . : . Chervin F. P. Laporte,'*t Ivan Minchev,? Kathryn V. Johnston,?, Facundo A.
simulations Galactic seismology: the evolving “phase spiral” after the  Gomes*s

Sagittarius dwarf impact 2020 i
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= The formation and evolution of disk galaxies is complex, many physical processes need to be
taken into account.

= With the recent release of the Gaia data and from the many active collaborations that studies
stellar and gas physical properties we now know much better the recent past of our Galaxy.

= However, the Galaxy still keeps many secrets waiting to be unveiled by new generations of
astronomers.

Sagittarius
Dwarf Galaxy

Thank you!

“The past gave us experience and made us wiser so that we can create a beautiful and brighter future.” '@
— Debasish Mridha



