Space Weather Prediction and the role of the MHD

Anastasios Anastasiadis

Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing National Observatory of Athens

Greece

HELLENIC ASTRONOMICAL SOCIETY

anastasi@noa.gr https://members.noa.gr/anastasi

The 5th Summer School of Hel.A.S. 16-20 September 2024, Ioannina

Space Weather definition (by ESA)

Space Weather definition (by ESA)

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and re **Space Weather definition (by ESA)**

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and re **Space Weather definition (by ESA)**

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and re **Space Weather definition (by ESA)**

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and re **Space Weather definition (by ESA)**

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and re **Space Weather definition (by ESA)**

"Space weather refers to the environmental conditions in Earth's

magnetosphere, ionosphere and thermosphere due to the Sun and the solar

wind that can influence the functioning and r "Space weather refers to the environmental conditions in Earth's magnetosphere, ionosphere and thermosphere due to the Sun and the solar wind that can influence the functioning and reliability of space-borne and ground-ba "Space weather refers to the environmental conditions in Earth's magnetosphere, ionosphere and thermosphere due to the Sun and the solar wind that can influence the functioning and reliability of space-borne and ground-ba "Space weather refers to the environmental conditions in Earth's magnetosphere, ionosphere and thermosphere due to the Sun and the solar wind that can influence the functioning and reliability of space-borne and ground-ba

Space Weather Effects

https://science.nasa.gov/science-pink/s3fs-public/atoms/files/GapAnalysisReport_full_final.pdf

TEPOZKOITEIO

Some Papers…

Space Weather Science and Observati for the National Aer **Space Administra**

A Report to NASA's S **Science Applicatio**

> **Compiled by** Sep.2020 - Apr

PHILOSOPHICAL TRANSACTIONS A

rovalsocietypublishing.org/journal/rsta

Cite this article: Anastasiadis A. Lario D. Panainannou A Kouloumvakos A Vourlidas A 2019 Solar energetic particles in the inner heliosphere: status and open questions. Phil. Trans. R. Soc. A 377: 20180100. http://dx.doi.org/10.1098/rsta.2018.0100

Accepted: 1 April 2019

One contribution of 9 to a theme issue 'Physics of solar eruptions and their space weather imnact'.

Subject Areas: astrophysics, plasma physics, high energy physics

Keywords: solar energetic particles, solar flares, coronal mass ejections

THE ROYAL SOCIETY

Author for correspo Anastasios Anastasiadis e mail: anastasi@noa gr Living Reviews in Solar Physics (2021) 18:4 https://doi.org/10.1007/s41116-021-00030-3

REVIEW ARTICLE

Solar energetic particles in the inner heliosphere: status and open questions

Anastasios Anastasiadis¹, David Lario²,

Athanasios Papaioannou¹, Athanasios

Kouloumvakos³ and Angelos Vourlidas^{4,1}

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, I. Metaxa & Vas. Pavlou St., 15236 Penteli, Greece ²Heliophysics Science Division, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA

³IRAP, Université Toulouse III - Paul Sabatier, CNRS, CNES, Toulouse, France

⁴Applied Physics Laboratory, The Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA

AA, 0000-0002-5162-8821; DL, 0000-0002-3176-8704; AP, 0000-0002-9479-8644; AV, 0000-0002-8164-5948

Solar energetic particle (SEP) events are related to both solar flares and coronal mass ejections (CMEs) and they present energy spectra that span from a few keV up to several GeV. A wealth of observations from widely distributed spacecraft have revealed that SEPs fill very broad regions of the heliosphere, often all around the Sun. Highenergy SEPs can sometimes be energetic enough to penetrate all the way down to the surface of the Earth and thus be recorded on the ground as ground level enhancements (GLEs). The conditions of the radiation environment are currently unpredictable due to an as-yet incomplete understanding of solar eruptions and their corresponding relation to SEP events. This is because the complex nature and the interplay of the injection, acceleration and transport processes undergone by the SEPs in the solar corona and the interplanetary space prevent us from establishing an accurate understanding (based on observations and modelling). In this work, we review the current status of knowledge on SEPs, focusing on GLEs and multi-spacecraft events. We extensively discuss the forecasting and nowcasting efforts of SEPs, dividing these into three categories.

ve

ished online: 29 June 2021

of energetic phenomena that structure ospheres. The effects of Space Weather ig importance as human spaceflight is s review is focusing on the solar peromena, coronal mass ejections (CMEs) solar wind stream interaction regions sion (launched in 2006), literally, new he first time to study coronal structures three dimensions. New imaging capa-

HELLENIC ASTRONOMICAL SOCIETY

C 2019 The Author(s) Published by the Royal Society. All rights reserved.

- SEP event is defined as a flux enhancement of protons with energy >10MeV in excess of 10 protons cm⁻² s⁻¹ ster⁻¹ (pfu)
- Single event effects (SEEs) are produced during periods of intense solar activity and are caused by protons with energies higher than 50 MeV and heavier ions with energies higher 10 MeV/nucleon

Solar Circle and SEPs

Particle Acceleration…

Consider a particle subject to external force, then the dynamics of particle is described by

$$
\frac{d\vec{p}}{dt} = \vec{F}(x, t)
$$

$$
x=\vec{X}(t)
$$

Is the particle's trajectory The change in $t=0$ The momentum

$$
t=\Delta t
$$

$$
\Delta p = \int_0^{\Delta t} dt' F(X(t'), t')
$$

Single particle motion in EM fields…

The Lorenz Force :

$$
m_j \frac{d\vec{v}_j}{dt} = q_j [\vec{E}(\vec{r}, t) + \frac{\vec{v}_j \times \vec{B}(\vec{r}, t)}{c}]
$$

$$
\nabla \vec{E}(\vec{r},t) = 4\pi \rho(\vec{r},t)
$$

$$
\vec{J}(\vec{r},t) = \frac{1}{V} \sum_{j=1}^{N} \vec{v}_j q_j
$$

$$
\nabla \times \vec{E}(\vec{r},t) = -\frac{1}{c}\frac{\partial \vec{B}(\vec{r},t)}{\partial t}
$$

 $\nabla \times \vec{B}(\vec{r},t) = \frac{4\pi}{c} \vec{J}(\vec{r},t) + \frac{1}{c} \frac{\partial \vec{E}(\vec{r},t)}{\partial t}$

$$
\rho(\vec{r},t) = \frac{1}{V} \sum_{j=1}^{N} q_j
$$

Particle Distribution in EM fields…

$$
\frac{\partial f_j}{\partial t} + \vec{v} \nabla_r f_j + \frac{q_j}{m_j} \left[\vec{E} + \frac{\vec{v} \times \vec{B}}{c} \right] \nabla_v f_j = 0
$$

$$
\nabla \vec{E}(\vec{r},t) = 4\pi \rho(\vec{r},t)
$$

$$
\nabla \vec{B}(\vec{r},t) = 0
$$

$$
\nabla \times \vec{E}(\vec{r},t) = -\frac{1}{c} \frac{\partial \vec{B}(\vec{r},t)}{\partial t}
$$

$$
\rho(\vec{r},t) = \sum_{j=e,i} q_j \int f_j(\vec{r},\vec{v},t) d\vec{v}
$$

$$
\times \vec{B}(\vec{r},t) = \frac{4\pi}{c} \vec{J}(\vec{r},t) + \frac{1}{c} \frac{\partial \vec{E}(\vec{r},t)}{\partial t}
$$

 ∇

Origin of SEPs (acceleration)

[1] Flare acceleration:

- reconnecting current sheet, induced E, waves, possibly reconnection shock • active region, mainly low corona
- particles reveal by radiative signatures (gamma, HXR, radio), evidence for e (>10 MeV), p (>300 MeV)

HELLENIC ASTRONOMICAL SOCIETY

IAASARS

After K.-L. Klein., Solar Orbiter Workshop, Athens, ESA-SP

[2] CME acceleration:

- fast CME drives shock wave
- particles scatter between shock and the upstream turbulence (diffusive shock acceleration) or drift along shock front (shock drift acceleration)
- evidence in situ (IP space, planetary bow shocks; up to which energy?

The Origin of SEP events

SEP Event (multi s/c observations)

Classes of SEP events… (?)

Since the 90s:

- distinction of 2 classes of events:
 Impulsive (small, frequent, presumably flare related)
- Gradual (large, rare, presumably fast $\frac{1}{10^6}$ CME related)

Current view:

CIVIL Telateu)
Current view:
• observational evidence point to the existence of **mixed** or **hybrid** events, i.e., both flares and CMEs are the drivers of SEP events

Acceleration, Transport, Prediction

Bruno & Carbone (2005)

NETEPOEKOITEION

Single Particle Trajectory

van den Berg et al. (2020)

Heliosphere (numerical simulation)

PARADISE…

The PARADISE model is probably the best example of the state-of-the-art when it comes to particle transport; Whitman et al. (2023) However, this is far from the complete picture: Coefficients and seed-particles are ad-hoc, SEP source probably not resolved... Predictive simulations not yet possible

SEP Event (12 July 2012)

Observations…

Observations…

General Concept for SW forecasting

Available online at www.sciencedirect.com **ScienceDirect**

ADVANCES IN SPACE RESEARCH a COSPAR publication

ww.elsevier.com/locate/as

Review

Review of solar energetic particle models

es in Space Research xxx (xxxx) xxx

Kathryn Whitman^{a,b,*}, Ricky Egeland^c, Ian G. Richardson^{d,e}, Clayton Allison^f, Philip Quinn¹, Janet Barzilla¹, Irina Kitiashvili⁸, Viacheslav Sadykov^h, Hazel M. Bain^{1,3}, Mark Dierckxsens^k, M. Leila Mays^d, Tilaye Tadesse^f, Kerry T. Lee^e, Edward Semones^e, Janet G. Luhmann¹, Marlon Núñez^m, Stephen M. Whiteⁿ, Stephen W. Kahlerⁿ, Alan G. Ling^o, Don F. Smart^p, Margaret A. Shea^p, Valeriy Tenishev¹, Soukaina F. Boubrahimi^r, Berkay Aydin^h, Petrus Martens^h, Rafal Angryk^h, Michael S. Marsh⁵, Silvia Dalla¹, Norma Crosby^k, Nathan A. Schwadron^u, Kamen Kozarev^v, Matthew Gorby^w, Matthew A. Young^u, Monica Laurenza^x, Edward W. Cliver^y, Tommaso Alberti^x, Mirko Stumpo^{2,x}, Simone Benella^x, Athanasios Papaioannou⁸⁸, Anastasios Anastasiadis⁸⁸, Ingmar Sandberg⁸ Manolis K. Georgoulis ^{ac}, Anli Ji¹, Dustin Kempton ^h, Chetraj Pandey ^h, Gang Li^{ad}, Junxiang Hu^{ad}, Gary P. Zank ^{ad}, Eleni Lavasa ^{ac, aa}, Giorgos Giannopoulos ^{af}, David Falconer^{ad, ag}, Yash Kadadi^{ah}, Ian Fernandes^{ai}, Maher A. Dayeh^{aj,} Andrés Muñoz-Jaramillo^{ak}, Subhamoy Chatterjee^{ak}, Kimberly D. Moreland^{al,aj}, Igor V. Sokolov^q, Ilia I. Roussev¹, Aleksandre Taktakishvili^{am}, Frederic Effenberger^{an}, Tamas Gombosi^q, Zhenguang Huang^q, Lulu Zhao^q, Nicolas Wijsen^{ao}, Angels Aran^{ap}, Stefaan Poedts^{ao, aq}, Athanasios Kouloumvakos^{ar}, Miikka Paassilta^{as}, Rami Vainio^{ae} Anatoly Belov^{at}, Eugenia A. Eroshenko^{at, 1}, Maria A. Abunina^{at}, Artem A. Abunin^{at}, Christopher C. Balch[]], Olga Malandraki^{aa}, Michalis Karavolos^{aa}, Bernd Heber^{au}, Johannes Labrenz^{au}, Patrick Kühl^{au}, Alexander G. Kosovichev^{av_ag}, Vincent Oria^{av}, Gelu M. Nita^{av}, Egor Illarionov^{aw,ax}, Patrick M. O'Keefe^{av}, Yucheng Jiang^{av}, Sheldon H. Fereira^{av}, Aatiya Ali^h, Evangelos Paouris^{ay,az} Sigiava Aminalragia-Giamini^{ab,ae}, Piers Jiggens^{ba}, Meng Jin^{bb}, Christina O. Lee¹, Erika Palmerio^{be}, Alessandro Bruno^{d,am}, Spiridon Kasapis^q, Xiantong Wang^q, Yang Chen^q, Blai Sanahuja^{ap}, David Lario^d, Carla Jacobs^{bd}, Du Toit Strauss^{be}, Ruhann Steyn^{be}, Jabus van den Berg^{ba, bf}, Bill Swalwell¹, Charlotte Waterfall¹, Mohamed Nedal¹, Rositsa Miteva^v, Momchil Dechev^v, Pietro Zucca^{bg}, Alec Engell^{bh}. Brianna Maze bh, Harold Farmer bh, Thuha Kerber bh, Ben Barnett bh, Jeremy Loomis bh, Nathan Grey^{bh}, Barbara J. Thompson^d, Jon A. Linker^{be}, Ronald M. Caplan^{be}, Cooper Downs be, Tibor Török be, Roberto Lionello be, Viacheslav Titov be, Ming Zhang bi, Pouya Hosseinzadeh^r

* Corresponding author at: KBR, 601 Jefferson Street, Houston, TX 77002, USA. E-mail address: kathryn.whitman@assa.gov (K. Whitman) ¹ Decreed

https://doi.org/10.1016/j.asr.2022.08.006 0273-1171/0 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://c

Please cite this article as: K. Whitman, R. Egeland, I. G. Diskus to earch, https://doi.org/10.10.2EPOΣKOITER *ONAL OBSERVATORS* **IAASARS**

ate/hy/d.00

Summarize 35 SEP models in the community with over 100 coauthors

Inputs/Outputs **Caveats** Validation

Critical observations to run and validate SEP models

Understand forecasting coverage and identify gaps

https://doi.org/10.1016/j.asr.2022.08.006

Table 1

Solar energetic particle models. For any models without an entry in the Access column, we encourage interested readers to contact the model developer. RoR stands for Runs on Request available through CCMC. *Deployment to CCMC in progress, **Will be available on SEP Scoreboard and RoR.

35 models of many different approaches:

- Statistical and empirical relationships (11)
- Machine Learning approaches (8)
- Physics-based models (13)
- Combination approaches (3)
- Networks of linked forecast modules (4) (COMESEP, FORSPEF, GSU, SAWS-ASPECS) Statistical and empirical
relationships (11)
Machine Learning approaches
(8)
Physics-based models (13)
Combination approaches (3)
Networks of linked forecast
modules (4) (COMESEP,
FORSPEF, GSU, SAWS-ASPECS)
Categories some
- Categories somewhat capturing key physics

HELLENIC ASTRONOMICAL SOCIETY

16-20 September 2024, Ioannina

Forecasted Quantities: Pre/Post Eruption

- \geq 9/35 models make pre-eruption forecasts (highlighted)
- Nearly every pre-eruption model applies machine learning
- Most pre-eruption forecasts are for >10 MeV (6/9 models);
	- Forecasting Gap: >100 MeV is also important for human space exploration
- Most models (26/35) make posteruption forecasts

NETEROEKOITEION

ENTERNATORY

HELLENIC ASTRONOMICAL SOCIETY

The 5th Summer School of Hel.A.S. 16-20 September 2024, Ioannina

Table 10: Observational measurements used as inputs into SEP models.

SEP Forecasting Models - Summary

- 35 models in different stages of development using many approaches and a wide variety of observational inputs
	- $-1/3$ models are currently running in a real time environment (11/35)
	- 1/3 models are primarily research-focused (12/35)
	- 1/3 models have been recently developed (13/35)
	- 1/2 models can make forecasts with near real time data sources (17/35)
	- 2/3 models require data sources that have low cadence, high latency, and that are not operationally supported (22/35)
- Models that address these questions can have a role in forecasting:
	- Will an event occur? How intense will it be? How long will it last?
- The variety of models, their capabilities, and predicted quantities is of value to the 35 models in different stages of development using many approaches
variety of observational inputs
- $1/3$ models are currently running in a real time environment (11/35)
- $1/3$ models are primarily research-focused (12/

SAWS-ASPECS: Advanced Solar Particle Events Casting System

ESA Contract No. 4000120480/17/NL/LF/hh

http://tromos.space.noa.gr/aspecs

HELLENIC ASTRONOMICAL SOCIETY

IAASARS

The SAWS-ASPECS database

SHARPs

The SAWS-ASPECS database

Database of SFs, (I)CMEs, radio & SEP events

The 5th Summer School of Hel.A.S. 16-20 September 2024, Ioannina

The SAWS-ASPECS database

@ a glance

The SAWS-ASPECS system Forecasting mode | Solar Flares

Forecasting mode | Solar Flares

> Final Output: Flare & (Projected) CME | | 0.8 prob.

A range of time windows $\Bigg|$ $\Bigg|$ 0.0

Forecasting mode | SEP events

IAASARS

EDUL OBSERVATOR

IAASARS

HELLENIC ASTRONOMICAL SOCIETY

profile

SEP event time profiles

I Reak **Expected Peak Flux @ Different Confidence Levels**

SEP event time profiles

> Select *reference cases* considering the
heliolongitude of their solar origin to better describe the shape of the intensity-time
profiles.

> Select reference cases considering the
heliolongitude of their solar origin to better
describe the shape of the intensity-time
profiles.
codes and store them in a database. number of scenarios using MHD transport codes and store them in a database.

-2.0 L

SUN

Farth

Mars

 (AU)

SEP event time profiles

Mock-up based on actual data (SEP events)

In a nutshell

Outputs | SEP time profile

Outputs | SEP time profile

SPEARHEAD Project

Acknowledgements…

Acknowledgements...
Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,
Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA), **Acknowledgements...**
Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,
Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),
Kouloumvakos Athanasios (APL/JHU, USA), **Acknowledgements...**

Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,

Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),

Kouloumvakos Athanasios (APL/JHU, USA **Acknowledgements...**

Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,

Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),

Kouloumvakos Athanasios (APL/JHU, USA **Acknowledgements...**

Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,

Finland), Aran Angels (UdB, Spain), Vourlidas Angelos

(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),

Kouloumvakos Athanasios (APL/JHU, US **Acknowledgements...**

Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,

Finland), Aran Angels (UdB, Spain), Vourlidas Angelos

(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),

Kouloumvakos Athanasios (APL/JHU, US Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,
Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),
Kouloumvakos Athanasios (APL/JHU, USA), Paouris Evangelos
(APL Papaioannou Athanasios (NOA/IAASARS), Vainio Rami (UT,
Finland), Aran Angels (UdB, Spain), Vourlidas Angelos
(APL/JHU, USA), Georgoulis Manolis (APL/JHU, USA),
Kouloumvakos Athanasios (APL/JHU, USA), Paouris Evangelos
(APL

