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Neural Networks (NNs)

Complex models that can be trained to approximate
any function or operation
’
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Physics Informed NNs (PINNSs)

— Unknown physics/equations

— High cost of data acquisition

— High-dimensional data

— Missing data, complex noise processes

— Multiple formats (images, time-series, scattered data)
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Neural Networks (NNs)

Forward Propagation

h Iterative process until

loss function is

» minimized

o

Backward Propagation



Physics Informed NNs (PINNSs)

PDE: L(u(x,t),8) = g
NN(w, b) N
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Physics-informed machine learning

George Em Karniadakis ™ loannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang & Liu Yang

models and approximations must be accompanied by guarantees and
errorbounds of their nredictions

The advent of ML has provided new hope (and also hype) for the
solution of PDEs in physics and fluid dynamics. Although ML has shown
tremendous success in problems related to pattern recognition and
process automation, there have not been similar advances in solving
challenging PDEs. For example, several state-of-the-art methods solve
rather simplified problems. Inafluid dynamics context,lamnotaware
of a ML approach that can reliably simulate flows past a cylinder or
vortex merging at Reynolds numbers above 5,000, evenin 2D. Moreo-
ver, there arelarge costs associated with the training phase of these
algorithms, which need attention. However, thereis hope that solving
real-life physical problems with missing, gappy or noisy boundary
conditionsis the areawhere ML approaches have anadvantage. Theres-
OIUTION Lo these challenges Tes not I the aomairn of the fearning algo-
rithms alone but at their interface with classical numerical methods.
Lessons learned in CoS can be valuable in accelerating Al discoveries
in this context.




First PINN applications
iIn MHD



PINN applications in MHD

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 524, 32-42 (2023) https://doi.org/10.1093/mnras/stad 1810
Advance Access publication 2023 June 16

Modelling force-free neutron star magnetospheres using physics-informed
neural networks

Jorge F. Urbdn,' Petros Stefanou,'** Clara Dehman “** and José A. Pons'
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We have performed a detailed study to measure the influence

of various hyperparameters of our model. In particular, we have
considered the following:

(i) Changes of the parametrization of the boundary (¢" power).
(i1) Number of neurons at each layer.

(ii1)) Number of hidden layers.

(1v) Resnet versus FC architectures.
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PINN applications in MHD
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Figure 7. Field lines for the current-free (red) and FF (black) cases. The
multipole coefficients at the surface are b; . | = 0.5 for both. For the FF case,
the coefficients in expression (9) for 7(P) are 51 = 0.2, s = 0.4.
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5 APPLICATION TO THE MAGNETOTHERMAL
EVOLUTION OF NEUTRON STARS

Our astrophysical scenario of interest is the long-term evolution of
magnetic fields in NSs. The evolution of the system is governed by

two coupled equations: the heat diffusion equation and the induction (q, K, b2, b3, b4, b5, b6, b7,$ 1,52)
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Figure 10. Same as Fig. 9. A snapshot of the magnetic field evolution and the electric current at 80 kyr. Left-hand panel: FF BCs. Right-hand panel: vacuum



Pulsar Magnetospheres
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What is the reference
steady-state solution
for Pulsars?
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Pulsar Magnetospheres today

* The Y-point at 75% to 85% of the light cylinder
(in all global PIC simulations of the last 10 years)

e Current sheets cannot be treated with the ideal
force-free formalism (e.g. the pulsar equation)

* The whole magnetosphere disappears via
dissipation in the equatorial current sheet within
a few hundred light cylinders

 Simulations relax to one solution: how about
mode switching?

* |ssues with resolution of global PIC simulations



Solution of

the Pulsar Equation
with PINNs



Steady-state in 2D: pulsar equation
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Steady-state in 2D: pulsar equation
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Figure 1. A sketch of the network structure. Two sub-networks are employed to ensure that P = P(g, 1) and T = T(P).
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Solving the pulsar equation using physics-informed neural networks




We can do better...
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Old methodology

e Solve the 2D pulsar equation (steady-state)
— Not yet in 3D but doable

e Start with a dipole and set the star in rotation at
t=0 =» the FFE/MHD/PIC simulation relaxes to
the steady-state (does it?)

* |ssues with Current Sheets

— Numerical vs physical dissipation
— Internal structure (non ideal, finite thickness)

* Y-point at “80% of the light cylinder



Bransgrove, Beloborodov, Levin 2023







New methodology

* Choose Wy =W, . (or0,)
e Separate closed (IN) and open (OUT) regions
— Monopole OUT =»equatorial CS disappears!

* Solve IN, solve OUT (e.g. meshless with PINNSs)
K * Check for pressure imbalance across separatrix

* Adjust separatrix

=>» Solution with pressure balance across separatrix
— Equatorial CS restored in the end!
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We discovered
a new solution!
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Intermittent pulsars
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We also show the solution for bpe = 0.94(r./Ric)"? that
yields Wopen = 0.87%gipole Lc and £ = 0.75Eyacuum(90°). Here,
E\vacuum(A) 1s the spindown rate of a vacuum dipole rotator with in-
clination angle 4. We may tentatively generalize this solution for
non-zero pulsar inclination angles according to Spitkovsky (2006)
as E(1) ~ 0.75Eac0um(90°)(1 + sin’ 1), and since Eyyeuum(A) =
E\yacuum (90°) sin A, we obtain that

. )

_ED g5 LA s (38)

E\acuum(A) sin” A
[t is interesting that in all previous solutions of the FFE pulsar mag-
netosphere, the above ratio was found to be greater than 3 (e.g.
Li, Spitkovsiky & Tchekhovskoy 2012). This value is significantly
larger than the ratio of spindown rates Eon/Eorr observed in the
intermittent pulsars PSR B1931+24, PSR J1832+0029 and PSR
J1841-0500 (1.5, 1.7 and 2.5 respectively; e.g. Rea et al. 2008,
Wang et al. 2020). The inability to account for observed values
lower than 3 is what led to the development of resistive magneto-
spheric solutions (e.g. Kalapotharakos et al. 2012b, Li, Spitkovsky
& Tchekhovskoy 2012). With our new solutions it seems that there
is no need for resistivity to explain intermittent pulsars. This result
certainly merits further investigation.
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Solution of
the 3D Pulsar Equation
with PINNSs

Dimitropoulos, Contopoulos 2024 (work in progress)



Steady-state in 3D
peE+ J X B/c=0

VxB xB =0
VB =aB B -Va=0
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Dimitropoulos, Contopoulos 2024 (work in progress)




boundary training points training grid points for the pde

e outregion
e Inregion

T 0.4

Dimitropoulos, Contopoulos 2024 (work in progress)



axis training points
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Summary

* PINNs possess considerable power

— It is important to recognize their inherent challenges
and limitations (must never be left unmonitored)

* Minimum energy solution when x,=0.85
— Seen in all global PIC simulations since 2014

* New solutions: as x,~>1, E>0
— New possibilities for pulsar spindown

* We need to investigate and resolve the above
issues before embarking into more of the same
“grand ab-initio” simulations



Future PINN applications



Future PINN applications

* Completion of the 3D pulsar magnetosphere

* 3D reconstruction of the force-free magnetic
field in solar active regions (direct spinoff)



boundary training points training grid points for the pde

e outregion
e Inregion

T 0.4
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Thank you!
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