

# MHD with Physics Informed Neural Networks (PINNs)

Ioannis Contopoulos

Research Center for Astronomy, Academy of Athens

5<sup>th</sup> Summer School of Hel.A.S. September 16, 2024, Ioannina

# Outline

- Introduction to PINNs
- First PINN applications in MHD
- Pulsar Magnetospheres
- Solution of the Pulsar Equation with PINNs
- We can do better...
- Solution of the 3D Pulsar Equation with PINNs
- Future PINN applications



# Introduction to PINNs

# Physics Informed NNs (PINNs)



Journal of Computational Physics

Volume 378, 1 February 2019, Pages 686-707



Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

<u>M. Raissi a, P. Perdikaris b</u> 🛛 🖂 M. <u>G.E. Karniadakis</u>a

# Neural Networks (NNs)

### Complex models that can be trained to approximate any function or operation



# Physics Informed NNs (PINNs)

- Unknown physics/equations
- High cost of data acquisition
- High-dimensional data
- Missing data, complex noise processes
- Multiple formats (images, time-series, scattered data)



# Neural Networks (NNs)



# Physics Informed NNs (PINNs)







Review Article | Published: 24 May 2021

### **Physics-informed machine learning**

<u>George Em Karniadakis</u> <sup>™</sup>, <u>Ioannis G. Kevrekidis</u>, <u>Lu Lu</u>, <u>Paris Perdikaris</u>, <u>Sifan Wang</u> & <u>Liu Yang</u>

models and approximations must be accompanied by guarantees and error bounds of their predictions.

The advent of ML has provided new hope (and also hype) for the solution of PDEs in physics and fluid dynamics. Although ML has shown tremendous success in problems related to pattern recognition and process automation, there have not been similar advances in solving challenging PDEs. For example, several state-of-the-art methods solve rather simplified problems. In a fluid dynamics context, I am not aware of a ML approach that can reliably simulate flows past a cylinder or vortex merging at Reynolds numbers above 5,000, even in 2D. Moreover, there are large costs associated with the training phase of these algorithms, which need attention. However, there is hope that solving real-life physical problems with missing, gappy or noisy boundary conditions is the area where ML approaches have an advantage. The res-

olution to these challenges lies not in the domain of the learning algorithms alone but at their interface with classical numerical methods. Lessons learned in CoS can be valuable in accelerating AI discoveries in this context.



# First PINN applications in MHD

ct DINN annlica

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **524**, 32–42 (2023) Advance Access publication 2023 June 16 https://doi.org/10.1093/mnras/stad1810

# Modelling force-free neutron star magnetospheres using physics-informed neural networks

Jorge F. Urbán,<sup>1</sup> Petros Stefanou,<sup>1,2\*</sup> Clara Dehman<sup>(D)3,4</sup> and José A. Pons<sup>1</sup>

$$\boldsymbol{J} \times \boldsymbol{B}/c = 0$$

 $(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} = 0$ 

 $\boldsymbol{B} = \boldsymbol{\nabla} \boldsymbol{\mathcal{P}} \times \boldsymbol{\nabla} \boldsymbol{\phi} + \boldsymbol{\mathcal{T}} \boldsymbol{\nabla} \boldsymbol{\phi}$ 

 $\nabla \mathcal{P} \times \nabla \mathcal{T} = 0$ 

# $\Delta_{\rm GS}\mathcal{P}+G(\mathcal{P})=0$

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **524**, 32–42 (2023) Advance Access publication 2023 June 16 https://doi.org/10.1093/mnras/stad1810

# Modelling force-free neutron star magnetospheres using physics-informed neural networks

$$\mathcal{T}(\mathcal{P}) = s_1 \mathcal{P} + s_2 \mathcal{P}^2 \qquad \mathcal{P}(q = 1, \mu) = \left(1 - \mu^2\right) \sum_{l=1}^{l_{\text{max}}} \frac{b_l}{l} P_l'(\mu)$$

$$\mathcal{P}(\boldsymbol{x}; \Omega) = f_b(\boldsymbol{x}) + h_b(\boldsymbol{x})\mathcal{N}(\boldsymbol{x}; \Omega)$$

$$f_b(q, \mu) = q^n \left(1 - \mu^2\right) \sum_{l=1}^{l_{\max}} \frac{b_l}{l} P_l'(\mu)$$

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **524**, 32–42 (2023) Advance Access publication 2023 June 16

https://doi.org/10.1093/mnras/stad1810

# Modelling force-free neutron star magnetospheres using physics-informed neural networks

$$\mathcal{T}(\mathcal{P}) = s_1 \mathcal{P} + s_2 \mathcal{P}^2 \qquad \mathcal{P}(q = 1, \mu) = \left(1 - \mu^2\right) \sum_{l=1}^{l_{\text{max}}} \frac{b_l}{l} P_l'(\mu),$$
  
$$\mathcal{P}(\boldsymbol{x}; \Omega) = f_b(\boldsymbol{x}) + h_b(\boldsymbol{x}) \mathcal{N}(\boldsymbol{x}; \Omega)$$
  
$$f_b(q, \mu) = q^n \left(1 - \mu^2\right) \sum_{l=1}^{l_{\text{max}}} \frac{b_l}{l} P_l'(\mu).$$

We have performed a detailed study to measure the influence of various hyperparameters of our model. In particular, we have considered the following:

- (i) Changes of the parametrization of the boundary  $(q^n \text{ power})$ .
- (ii) Number of neurons at each layer.
- (iii) Number of hidden layers.
- (iv) Resnet versus FC architectures.

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

Royal Astronomical Society

MNRAS **524**, 32–42 (2023) Advance Access publication 2023 June 16 https://doi.org/10.1093/mnras/stad1810

### Modelling force-free neutron star magnetospheres using physics-informed



**Figure 7.** Field lines for the current-free (red) and FF (black) cases. The multipole coefficients at the surface are  $b_{l>1} = 0.5$  for both. For the FF case, the coefficients in expression (9) for  $\mathcal{T}(\mathcal{P})$  are  $s_1 = 0.2$ , s = 0.4.

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **524**, 32–42 (2023) Advance Access publication 2023 June 16 https://doi.org/10.1093/mnras/stad1810

# Modelling force-free neutron star magnetospheres using physics-informed neural networks

### **5 APPLICATION TO THE MAGNETOTHERMAL EVOLUTION OF NEUTRON STARS**

Our astrophysical scenario of interest is the long-term evolution of magnetic fields in NSs. The evolution of the system is governed by two coupled equations: the heat diffusion equation and the induction equation  $8.0 \times 10^{4} \text{ [yr]}$ 





Figure 10. Same as Fig. 9. A snapshot of the magnetic field evolution and the electric current at 80 kyr. Left-hand panel: FF BCs. Right-hand panel: vacuum



# Pulsar Magnetospheres



# What is the reference steady-state solution for Pulsars?



Spitkovsky 2005



Philippov, Kramer 2023

# Pulsar Magnetospheres today

- The Y-point at 75% to 85% of the light cylinder (in all global PIC simulations of the last 10 years)
- Current sheets cannot be treated with the ideal force-free formalism (e.g. the pulsar equation)
- The whole magnetosphere disappears via dissipation in the equatorial current sheet within a few hundred light cylinders
- Simulations relax to one solution: how about mode switching?
- Issues with resolution of global PIC simulations



Solution of the Pulsar Equation with PINNs

# Steady-state in 2D: pulsar equation

$$\rho_{\rm e} E + J \times B/c = 0 \qquad B_r \equiv \frac{1}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta} ,$$
$$B_{\theta} \equiv -\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r} ,$$
$$B_{\phi} \equiv \frac{I(\Psi)}{r \sin \theta} ,$$

$$(1 - r^2 \sin^2 \theta) \left[ \frac{\partial^2 \Psi}{\partial r^2} - \frac{\partial \Psi}{\partial \theta} \frac{\cos \theta}{r^2 \sin \theta} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2} \right]$$
$$-2r \sin \theta \left[ \frac{\partial \Psi}{\partial \theta} \frac{\cos \theta}{r} + \frac{\partial \Psi}{\partial r} \sin \theta \right] + II'(\Psi) = 0$$

# Steady-state in 2D: pulsar equation

$$\rho_{\rm e} E + J \times B/c = 0 \qquad B_r \equiv \frac{1}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta} ,$$
$$B_{\theta} \equiv -\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r} ,$$
$$B_{\phi} \equiv \frac{I(\Psi)}{r \sin \theta} ,$$

 $(1 - \beta^2) \Delta_{GS} P + 2\beta^2 q^2 (q \partial_q P + \mu \partial_\mu P) + G(P) = 0,$ where G(P) = TT' and  $\Delta_{GS}$  is the Grad–Shafranov operator  $\Delta_{GS} \equiv q^2 \partial_q (q^2 \partial_q) + (1 - \mu^2) q^2 \partial_{\mu\mu}.$ 

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **526**, 1504–1511 (2023) Advance Access publication 2023 September 18 https://doi.org/10.1093/mnras/stad2840

### Solving the pulsar equation using physics-informed neural networks

Petros Stefanou,<sup>1,2</sup>\* Jorge F. Urbán<sup>1</sup> and José A. Pons<sup>1</sup>



**Figure 1.** A sketch of the network structure. Two sub-networks are employed to ensure that  $P = P(q, \mu)$  and T = T(P).

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **526**, 1504–1511 (2023) Advance Access publication 2023 September 18 https://doi.org/10.1093/mnras/stad2840

### Solving the pulsar equation using physics-informed neural networks

Petros Stefanou,<sup>1,2</sup>\* Jorge F. Urbán<sup>1</sup> and José A. Pons<sup>1</sup>





Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **526**, 1504–1511 (2023) Advance Access publication 2023 September 18 https://doi.org/10.1093/mnras/stad2840

### Solving the pulsar equation using physics-informed neural networks

Petros Stefanou,<sup>1,2</sup>\* Jorge F. Urbán<sup>1</sup> and José A. Pons<sup>1</sup>





Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **526**, 1504–1511 (2023) Advance Access publication 2023 September 18 https://doi.org/10.1093/mnras/stad2840

### Solving the pulsar equation using physics-informed neural networks





# We can do better...

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **528**, 3141–3152 (2024) Advance Access publication 2024 January 17 https://doi.org/10.1093/mnras/stae192

### The pulsar magnetosphere with machine learning: methodology

I. Dimitropoulos,<sup>1</sup> I. Contopoulos,<sup>2\*</sup> V. Mpisketzis<sup>3</sup> and E. Chaniadakis<sup>4</sup>

<sup>1</sup>Department of Physics, University of Patras, Rio 26504, Greece <sup>2</sup>Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens 11527, Greece <sup>3</sup>Department of Physics, National and Kapodistrian University of Athens, Athens 15784, Greece <sup>4</sup>Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece





### Article A New Solution of the Pulsar Equation

Ioannis Contopoulos <sup>1,\*</sup>, Ioannis Dimitropoulos <sup>1,2</sup>, Dimitris Ntotsikas <sup>2</sup> and Konstantinos N. Gourgouliatos <sup>2</sup>

- Research Center for Astronomy and Applied Mathematics, Academy of Athens, 11527 Athens, Greece; johndim888@gmail.com
- <sup>2</sup> Department of Physics, University of Patras, 26504 Rio, Greece; d.ntotsikas@ac.upatras.gr (D.N.); kngourg@upatras.gr (K.N.G.)
- \* Correspondence: icontop@academyofathens.gr

# Old methodology

- Solve the 2D pulsar equation (steady-state)
   Not yet in 3D but doable
- Start with a dipole and set the star in rotation at t=0 → the FFE/MHD/PIC simulation relaxes to the steady-state (does it?)
- Issues with Current Sheets
  - Numerical vs physical dissipation
  - Internal structure (non ideal, finite thickness)
- Y-point at ~80% of the light cylinder

### Bransgrove, Beloborodov, Levin 2023





# New methodology



- Choose  $\Psi_{\rm S} = \Psi_{\rm open}$  (or  $\theta_{\rm pc}$ )
- Separate closed (IN) and open (OUT) regions
   Monopole OUT → equatorial CS disappears!
- Solve IN, solve OUT (e.g. meshless with PINNs)
  - Check for pressure imbalance across separatrix
  - Adjust separatrix

➔ Solution with pressure balance across separatrix — Equatorial CS restored in the end!







 $B_p^2(1-x^2)\Big|_{\text{IN}} = B_p^2(1-x^2)\Big|_{\text{OUT}} + \frac{I(\Psi_{\text{S}})^2}{x^2}$ 

Contopoulos et al. 2024



 $B_p(x_Y)|_{\text{IN}} = \frac{I(\Psi_S)}{x_Y\sqrt{1-x_Y^2}} = \frac{I(\Psi_S)}{\sqrt{2}\sqrt{1-x_Y}} \to \infty \text{ when } x_Y \to 1$ 

Contopoulos et al. 2024



$$B_p(x_Y)|_{\text{IN}} = \frac{T(1S)}{x_Y\sqrt{1-x_Y^2}} = \frac{T(1S)}{\sqrt{2}\sqrt{1-x_Y}} \to \infty \text{ when } x_Y \to 1$$



We discovered a new solution!









# Intermittent pulsars



We also show the solution for  $\theta_{pc} = 0.94(r_*/R_{LC})^{1/2}$  that yields  $\Psi_{open} = 0.87\Psi_{dipole LC}$  and  $\dot{E} = 0.75\dot{E}_{vacuum}(90^\circ)$ . Here,  $\dot{E}_{vacuum}(\lambda)$  is the spindown rate of a vacuum dipole rotator with inclination angle  $\lambda$ . We may tentatively generalize this solution for non-zero pulsar inclination angles according to Spitkovsky (2006) as  $\dot{E}(\lambda) \approx 0.75\dot{E}_{vacuum}(90^\circ)(1 + \sin^2 \lambda)$ , and since  $\dot{E}_{vacuum}(\lambda) = \dot{E}_{vacuum}(90^\circ) \sin^2 \lambda$ , we obtain that

$$\frac{\dot{E}(\lambda)}{\dot{E}_{\text{vacuum}}(\lambda)} \approx 0.75 \ \frac{1 + \sin^2 \lambda}{\sin^2 \lambda} \gtrsim 1.5 \ . \tag{38}$$

It is interesting that in all previous solutions of the FFE pulsar magnetosphere, the above ratio was found to be greater than 3 (e.g. Li, Spitkovsiky & Tchekhovskoy 2012). This value is significantly larger than the ratio of spindown rates  $\dot{E}_{ON}/\dot{E}_{OFF}$  observed in the intermittent pulsars PSR B1931+24, PSR J1832+0029 and PSR J1841-0500 (1.5, 1.7 and 2.5 respectively; e.g. Rea et al. 2008, Wang et al. 2020). The inability to account for observed values lower than 3 is what led to the development of resistive magnetospheric solutions (e.g. Kalapotharakos et al. 2012b, Li, Spitkovsky & Tchekhovskoy 2012). With our new solutions it seems that there is no need for resistivity to explain intermittent pulsars. This result certainly merits further investigation.









# Solution of the 3D Pulsar Equation with PINNs

















# Summary

- PINNs possess considerable power
  - It is important to recognize their inherent challenges and limitations (must never be left unmonitored)
- Minimum energy solution when x<sub>y</sub>=0.85
   Seen in all global PIC simulations since 2014
- New solutions: as x<sub>Y</sub>→1, Ė→0
   New possibilities for pulsar spindown
- We need to investigate and resolve the above issues before embarking into more of the same "grand ab-initio" simulations



# **Future PINN applications**

# **Future PINN applications**

- Completion of the 3D pulsar magnetosphere
  + PIC investigation of Y-point and separatrix
- 3D reconstruction of the force-free magnetic field in solar active regions (direct spinoff)





Space Sci Rev (2018) 214:99 https://doi.org/10.1007/s11214-018-0534-1



### **Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse**

Anthony R. Yeates<sup>1</sup> · Tahar Amari<sup>2</sup> · Ioannis Contopoulos<sup>3,4</sup> · Xueshang Feng<sup>5</sup> ·





Contopoulos, Dimitropoulos, Gontikakis in preparation

Space Sci Rev (2018) 214:99 https://doi.org/10.1007/s11214-018-0534-1



### **Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse**

Anthony R. Yeates<sup>1</sup> · Tahar Amari<sup>2</sup> · Ioannis Contopoulos<sup>3,4</sup> · Xueshang Feng<sup>5</sup> ·





Contopoulos, Dimitropoulos, Gontikakis in preparation



# Thank you!