Nathan Maindon

HH 46/47, NIRCAM - Crédits: NASA, ESA, CSA - Joseph DePasquale, Anton M. Koekemoer

5th Hel.A.S. MHD Summer School - Ioannina, 20/09/24

PhD subject : Feedback of protostellar ejections on planetary formation (To be started on October 1st 2024)

Supervisors : Sylvie CABRIT (LERMA-OBSPM), Guillaume PINEAU DES FORÊTS (IAS-Saclay)

Context of star formation

Cf. talk of Kostas Tassis yesterday

Diverse interactions between magnetic field and matter of the protostellar object

This thesis: focused on T-Tauri stars

=> Kelvin-Helmholtz mechanism (gravitational collapse, slowed down by internal and radiative pressures) No nuclear reactions yet : T<T_{fus}(H)

Ejections in T-Tauri stars: "Herbig-Haro objects"

Collapse of an interstellar cloud
 Formation of a gas/dust disk
 Accretion on the star

Atomic jets: 10 000 K, 100 km/s Origin < 0.1 AU

 $\dot{M} \approx 0.1 \dot{M}_{accretion}$

Molecular flows (CO): 30 K, 10 km/s Origin 1-30 AU

 $\dot{M} \approx \dot{M}_{accretion}$

De Valon, Dougados, Cabrit+2020

Question : What is the origin of the observed molecular flows? What impact do these flows have on planetary formation?

Question : What is the **origin** of the observed **molecular flows**? What impact do these flows have on planetary formation?

TWO COMPETING MODELS

1) MHD magneto-centrifugal disk wind?

Recently preferred, on the basis of ALMA observations:

- Coherent rotation, ejection speed, mass fluxes

- Magnetic braking would explain accretion from disk onto the star

Major MHD effects on planetary formation and migration ?

Problems: - fineness of the CO cavity (r << R_{disk}) - Ejections are not systematic, whereas this wind should be !

2) Matter dragged by the atomic jets' bow shocks?

Alternative scenario: goal of this PhD

- Variability of the atomic jet (speed, mass flux):
- Generating bow shocks as it hits the disk and the envelope
- Could explain rarity of the phenomenon (+ fineness ?)

Quick overview of the bow shock

Promising latest model: *Rabenanahary, et al. 2022 First simulations of variable jets in a stratified environment, up to 10* ⁴ *years (with Z. Meliani) Code: AMR-VAC*

Image ALMA de DG Tau B; De Valon, Dougados, Cabrit+2020 -Static environment, with no rotatio -No chemistry -No disk -Scales >> 1000 au

Numerical Simulations

MHD : AMR-VAC

Parmi d'autres applications et problèmes, le module d'hydrodynamique de MPI-AMRVAC en particulier permet de résoudre les équations d'Euler avec termes sources traduisant : — la conservation de la masse :

$$\partial_t \rho + \nabla . \left(\rho \, \vec{v} \right) = M_p, \tag{III.1}$$

— la conservation de l'impulsion :

$$\partial_t \left(\rho \, \vec{v} \right) + \nabla. \left(\rho \vec{u} \vec{v} + p \vec{I} \right) = \vec{F}_p, \qquad (\text{III.2})$$

— la conservation de l'énergie :

$$\partial_t (e) + \nabla. ((e+p) \vec{v}) = E_p, \qquad (\text{III.3})$$

où ρ est la densité totale du fluide, p est la pression thermique; \vec{v} est le champ eulérien de vitesse du fluide; M_p, \vec{F}_p , et E_p traduisent respectivement les termes sources des trois équations de conservations; \vec{I} est le tenseur identité; et $e=\frac{p}{\gamma_{\rm ad}-1}+\frac{\rho u^2}{2}$ est la densité totale en énergie du gaz, avec $\gamma_{\rm ad}$ l'indice adiabatique. Dans un gaz parfait avec trois degrés de liberté, $\gamma_{\rm ad}=5/3$ (gaz monoatomique); tandis que dans un gaz isotherme, $\gamma_{\rm ad}=1.$

From the thesis of M. Rabenanahary (2022)

Adaptive mesh

Chemistry: Kimya (UNAM)

UNAM Team :pioneer in the coupling chemistry-HD of 2D/3D reactive flows (chemical characteristic time >> dynamic time: out of equilibrium)

KIMYA, a Code for Solving Chemical Reaction Networks in Astrophysics Revista Mexicana de Astronomía y Astrofísica Vol. 54, pp. 409-422 (2018)

Downwind method (more stable and fast), up to 15-30 chemical species

Goals of the thesis:

1) Develop the first realistic simulations of the jet/disk interaction < 1000 au

- with rotation + disk + collapsing residual envelope
- Simplified out-of-eq chemistry (H⁺, H, H₂, CO)
 + associated radiative cooling

2) Compare to our observations

- JWST : H_2 (2000 K): Shocks tracers
- ALMA: cold CO : Rotation, dragged mass

=> Discrimination *versus* MHD disk wind

- 3) Impact on planetary formation
 - Shocks on the disk + species depletion
 - Negligible MHD effects, or not?

Thanks for listening !