Theory and applications of magnetic field line helicity in Solar Physics

Kostas Moraitis University of Ioannina, Greece

5th Hel.A.S. Summer School "Magnetohydrodynamics in Astrophysics" Ioannina, 16-20 September 2024

Outline

- Introduction
	- Magnetic helicity Relative magnetic helicity
	- Definition and properties of field line helicity relative field line helicity
	- Computation of RFLH
- Applications of field line helicity
	- In idealized solar situations
	- In the global magnetic field
	- In solar active regions
	- RFLH as an indicator of solar eruptivity
- Summary

Outline

● **Introduction**

- Magnetic helicity Relative magnetic helicity
- Definition and properties of field line helicity relative field line helicity
- Computation of RFLH
- Applications of field line helicity
	- In idealized solar situations
	- In the global magnetic field
	- In solar active regions
	- RFLH as an indicator of solar eruptivity
- Summary

Magnetic helicity

- Magnetic helicity is a geometrical measure of the twist and writhe of the magnetic field lines, and of the intertwining between pairs of lines (Gauss linking number)
- Mathematically, it is defined through the vector potential **A**, as

 $H_{\rm m} = \int_V \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V$

- Signed scalar quantity (right $(+)$, or left $(-)$ handed) with units of magnetic flux squared (Wb²/Mx² in SI/cgs)
- Conserved in ideal MHD (Woltjer 1958); slower-than-energy deteriorating in resistive MHD (Taylor 1975; Pariat et al. 2015)
- Topological invariant; links cannot change by 'frozen' magnetic field lines
- Coronal mass ejections are caused by the need to expel the excess helicity accumulated in the corona (Rust 1994)

Relative magnetic helicity

Magnetic helicity is well defined (gauge independent) for closed *B*

$$
H_{\rm m} = \int_{V} \mathbf{A} \cdot \mathbf{B} \, dV \xrightarrow{\mathbf{A}' = \mathbf{A} + \nabla \xi} H'_{\rm m} = H_{\rm m} + \oint_{\partial V} \xi \mathbf{B} \cdot d\mathbf{S}
$$

$$
H'_{\rm m} = H_{\rm m} \Rightarrow \hat{n} \cdot \mathbf{B}|_{\partial V} = 0
$$

In astrophysical conditions, the appropriate form is relative magnetic helicity

 $H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV$

which is gauge independent for closed B - B _p

$$
\left.\hat{n}\cdot\mathbf{B}\right|_{\partial V}=\left.\hat{n}\cdot\mathbf{B}_{\rm p}\right|_{\partial V}
$$

Usually, reference field=potential (no current \rightarrow no helicity) RMH is a single number that characterizes the whole volume

Field line helicity

- Magnetic helicity provides no spatial information about the locations where helicity is more important
- A density for magnetic helicity cannot be defined since the vector potential is a non-local quantity
- A good proxy for the density of magnetic helicity is field line helicity (FLH), that can be defined as the *magnetic helicity per unit of magnetic flux* of a single field line

$$
h(C) = \lim_{\epsilon \to 0} \left(\frac{1}{\Phi_{\epsilon}} \int_{V_{\epsilon}} \mathbf{A} \cdot \mathbf{B} dV \right)
$$
\n
$$
= \lim_{\epsilon \to 0} \left(\frac{1}{\Phi_{\epsilon}} \int_{V_{\epsilon}} (\mathbf{A} \cdot d\mathbf{l}) d\Phi \right)
$$
\n
$$
= \int_{C} \mathbf{A} \cdot d\mathbf{l}
$$
\n
$$
= \int_{C} \mathbf{A} \cdot d\mathbf{l}
$$

Yeates & Page 2018

FLH properties

- FLH has units of magnetic flux (Wb/Mx in SI/cgs)
- \cdot FIH is:
	- unique for each field line
	- gauge-dependent for open field lines
	- \bullet the magnetic flux through the surface bounded by the field line, for closed field lines

$$
h(C; \mathbf{A}) = \begin{cases} \int_{c_{+}}^{c_{-}} \mathbf{A} \cdot d\mathbf{l}, & C \text{ open} \\ \oint_{C} \mathbf{A} \cdot d\mathbf{l} = \Phi, & C \text{ closed} \end{cases}
$$

- integral along the boundary
- \cdot It can also be considered as the:
	- flux per field line (Antiochos 1987)
	- average angle through which other field lines wrap around the given field line (Berger 1988)
	- topological flux function, action of the Hamiltonian system of the field lines (Yeates & Hornig, 2013; 2014)

Yeates & Hornig 2016

$$
H_{\rm m}=\oint_{\partial V}h\,\mathrm{d}\Phi
$$

Derivation of relative FLH

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV
$$
\n
$$
= \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathbf{B} dV - \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathbf{B}_{\rm p} dV
$$
\n
$$
= \oint_{\partial V^{+}} \left(\int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} \right) d\Phi - \oint_{\partial V^{+}} \left(\int_{\alpha_{p+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p} \right) d\Phi_{\rm p}
$$
\n
$$
= \oint_{\partial V^{+}} \left(\int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p} \right) d\Phi
$$
\n
$$
= \oint_{\partial V^{+}} \left(\int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p} \right) d\Phi
$$
\n
$$
= \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
= \int_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$
\n
$$
=
$$

➔ Field lines that close within the volume do not enter in this calculation

Relative field line helicity

We can similarly define two other RFLHs depending on the part of the boundary considered:

$$
H_{\rm r} = \oint_{\partial V^{+}} h_{\rm r}^{+} \, \mathrm{d}\Phi = \oint_{\partial V^{-}} h_{\rm r}^{-} \, \mathrm{d}\Phi = \oint_{\partial V} h_{\rm r} \, \mathrm{d}\Phi
$$
\nwhole boundary

\n
$$
h_{\rm r} = \frac{1}{2} \left(h_{\rm r}^{+} + h_{\rm r}^{-} \right)
$$
\n(+) polarity

\n
$$
h_{\rm r}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathrm{d}I - \int_{\alpha_{+}}^{\alpha_{p_{-}}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathrm{d}I_{\rm p}
$$
\n(-) polarity

\n
$$
h_{\rm r}^{-} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathrm{d}I - \int_{\alpha_{p_{+}}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot \mathrm{d}I_{\rm p}
$$

In all cases, RFLH involves two set of field lines, of **B** and of **Bp**, and recovers relative helicity when summed over the respective boundary

RFLH components

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) \, \mathrm{d}V
$$

$$
H_{\rm r} = H_{\rm j} + H_{\rm pj}
$$

$$
H_{\rm j} = \int_{V} (\mathbf{A} - \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) \, \mathrm{d}V \qquad H_{\rm pj} = 2 \int_{V} \mathbf{A}_{\rm p} \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) \, \mathrm{d}V
$$

current-carrying component volume-threading component (self helicity) (mutual helicity)

 $H_{\rm pj} = \oint_{\partial V^+} h_{\rm pj}^+ d\Phi = \oint_{\partial V^-} h_{\rm pj}^- d\Phi = \oint_{\partial V} h_{\rm pj} d\Phi$

Berger 1999; Linan et al. 2018

$$
H_{\rm j} = \oint_{\partial V^+} h_{\rm j}^+ \, {\rm d}\Phi = \oint_{\partial V^-} h_{\rm j}^- \, {\rm d}\Phi = \oint_{\partial V} h_{\rm j} \, {\rm d}\Phi
$$

$$
h_{\mathbf{j}}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} - \mathbf{A}_{\mathbf{p}}) \cdot \mathbf{d} \mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} - \mathbf{A}_{\mathbf{p}}) \cdot \mathbf{d} \mathbf{l}_{\mathbf{p}}
$$

current-carrying FLH volume-threading FLH

 $h_{\rm pj}^+ = 2 \int_{\alpha_+}^{\alpha_-} \mathbf{A}_{\rm p} \cdot \mathrm{d}l - 2 \int_{\alpha_+}^{\alpha_{p-}} \mathbf{A}_{\rm p} \cdot \mathrm{d}l_{\rm p}$

$$
h_{\rm r}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p}
$$

$$
H_{\rm r} = \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV
$$

Instantaneous, finite-volume method Input : *B*, grid Requires: 2x fl integrations + A , $A_p \leftarrow B$, B_p Steps: 1. $B \rightarrow B_p$ 2. *B*, *B* **p** → *A*, *A* **p** 3. fl integrations along *B*, *B* **p**

$$
h_{\rm r}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p}
$$

$$
H_{\rm r} = \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV
$$

Instantaneous, finite-volume method Input : *B*, grid Requires: 2x fl integrations + A , $A_p \leftarrow B$, B_p Steps: 1. $B \rightarrow B_p$ 2. *B*, *B* **p** → *A*, *A* **p** 3. fl integrations along *B*, *B* **p**

Compute potential magnetic field under gauge invariance condition

$$
\mathbf{B}_{\mathrm{p}} = \nabla \Phi \qquad \nabla^2 \Phi = 0
$$

$$
\hat{n} \cdot \mathbf{B}_{\mathrm{p}}|_{\partial V} = \hat{n} \cdot \mathbf{B}|_{\partial V} \qquad \qquad \frac{\partial \Phi}{\partial \hat{n}}|_{\partial V} = \hat{n} \cdot \mathbf{B}|_{\partial V}
$$

solution of Laplace's equation under Neumann BCs

- Trivial problem in Cartesian coordinates, different numerical libraries using FFT method in non-homogeneous, uniform grid
- It can also be done in spherical and cylindrical
- For non-uniform grid, interpolation to and from a uniform grid is required

$$
h_{\rm r}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p}
$$

$$
H_{\rm r} = \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV
$$

Instantaneous, finite-volume method Input : *B*, grid Requires: 2x fl integrations + A , $A_p \leftarrow B$, B_p Steps: 1. $B \rightarrow B_p$ 2. $B, B_p \rightarrow A, A_p$ 3. fl integrations along *B*, *B* **p**

Computation of vector potentials by inversion of $B = \nabla \times A$ with Valori et al. 2012 method which uses DeVore (2000) gauge $\hat{\mathbf{z}} \cdot \mathbf{A} = 0$

$$
\mathbf{A}(x, y, z) = \boldsymbol{\alpha}(x, y) + \hat{\mathbf{z}} \times \int_{z_0}^{z} dz' \, \mathbf{B}(x, y, z')
$$

- Same method for both vector potentials
- Reference plane $z=z_0$ important
- Integrations: trapezoidal rule, applicable also to non-uniform grid
- 5 th HelAS Summer School, 18 Sep 2024 • 2D Poisson problem similarly to 3D Laplace

DV simple gauge (DVS) $\alpha_y(x,y) = c \int_{x_0}^x \mathrm{d}x' B_z(x',y,z_0)$ $\alpha_x(x,y) = -(1-c)\int_0^y dy' B_z(x,y',z_0)$ $c \in [0,1]$ DV Coulomb gauge (DVC) $\nabla_{\perp} \cdot \boldsymbol{\alpha} = 0$ $\boldsymbol{\alpha} = \hat{\mathbf{z}} \times \nabla_{\perp} u$ $\nabla^2_1 u = B_z(x, y, z_0)$

$$
h_{\rm r}^{+} = \int_{\alpha_{+}}^{\alpha_{-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l} - \int_{\alpha_{+}}^{\alpha_{p-}} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot d\mathbf{l}_{\rm p}
$$

$$
H_{\rm r} = \oint_{\partial V^{+}} h_{\rm r}^{+} d\Phi
$$

$$
H_{\rm r} = \int_{V} (\mathbf{A} + \mathbf{A}_{\rm p}) \cdot (\mathbf{B} - \mathbf{B}_{\rm p}) dV
$$

Instantaneous, finite-volume method Input : *B*, grid Requires: 2x fl integrations + A , $A_p \leftarrow B$, B_p Steps: 1. $B \rightarrow B_p$ 2. *B*, *B* **p** → *A*, *A* **p** 3. fl integrations along *B*, *B* **p**

- Variety of fl integration routines
- Modification of QSL Squasher code (Tassev & Savcheva 2016) which uses adaptive RK in C++, fast and robust
- Augment system of equations with
- Same method for both field line integrations
- Consider only photosphere
- RFLH more computationally-demanding than relative helicity
- RFLH components can be computed the same way

$$
\frac{\mathrm{d}h}{\mathrm{d}s} = \frac{(\mathbf{A} + \mathbf{A}_p) \cdot \mathbf{B}}{B}
$$

Importance of gauge choice

5 th HelAS Summer School, 18 Sep 2024

BF gauge (Yeates & Page 2018)

Outline

- Introduction
	- Magnetic helicity Relative magnetic helicity
	- Definition and properties of field line helicity relative field line helicity
	- Computation of RFLH
- **Applications of field line helicity**
	- In idealized solar situations
	- In the global magnetic field
	- In solar active regions
	- RFLH as an indicator of solar eruptivity
- Summary

Idealized applications I

Magnetic braids = non-zero, line-tied magnetic fields whose field lines all connect between two boundaries Model of coronal loops $\mathcal{A}(x_0) = \int_{x_0}^{F(x_0)} \mathbf{A}(f(x_0; z)) \cdot \mathrm{d}\mathbf{l}$ FLH:

- Measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all other
- Ideal invariant under specific gauge
- Gives relative helicity when integrated over 'photosphere'
- Uniquely characterizes field line mapping and magnetic topology

$$
\underset{\text{def}}{\text{ners}} \frac{\mathbf{n} \times \mathbf{A}|_{\partial V} = \mathbf{n} \times \mathbf{A}^{\text{ref}}|_{\partial V}}{\mathbf{A} \cdot \mathbf{A}} = \int_{x_0}^{F(x_0)} \nabla(\Phi + \mathbf{v} \cdot \mathbf{A}) \cdot \mathrm{d}\mathbf{l} = 0
$$

$$
H_r - H^{\text{ref}} = \int_{D_0} \mathcal{A}(x_0) B_z(x_0) d^2 x_0
$$

Yeates & Hornig 2013; 2014

Idealized applications II

 $\mathbf d$

 \mathfrak{p}

 -2

 -3

 -4

 -2

Evolution of FLH during magnetic reconnection

$$
\frac{d\mathcal{A}(\vec{x},t)}{dt} = \frac{d}{dt} \int_{F(\vec{x},t)} \vec{A} \cdot d\vec{l}
$$

$$
= \int_{F(\vec{x},t)} \left[\frac{\partial \vec{A}}{\partial t} - \vec{w} \times \nabla \times \vec{A} + \nabla (\vec{w} \cdot \vec{A}) \right] \cdot d\vec{l}
$$

$$
= \int_{F(\vec{x},t)} \nabla (\vec{w} \cdot \vec{A} - \Psi - \Phi) \cdot d\vec{l}
$$

$$
= \left[\vec{w} \cdot \vec{A} - \Psi - \Phi \right]_{\vec{x}_0}^{\vec{x}_1}
$$
Russel et al. 2015

motion of fl on boundaries: in both ideal and reconnection, gauge-dependent voltage drop along fl electric potential: can be eliminated by gauge choice

MHD simulation of magnetic braids' relaxation

Mathematical applications

Theorem 1. Let **v**, **v**' be two braided vector fields on the same domain M whose field lines on S_s are linked by an end-vanishing isotopy. Then the field lines of **v** and those of **v**' within M can be linked by an end-vanishing isotopy if and only if $L_v = L_{v'}$ on all of D_0 .

tubular subdomain $=$ embedding of the unit cylinder

Prior & Yeates 2021 topological characterisation of braided vector fields through field line winding

$$
H = \int_{\mathcal{S}^+} \varepsilon^{kj} \partial_k X^i \widetilde{C_{ri}} C_{rj} \mathrm{d} x^1 \mathrm{d} x^2 - H_r
$$

Aly 2018 tangential components of *C***^r** magnetic mapping

The global magnetic field of the Sun

Time-dependent, nonpotential simulation of global coronal *B* magnetofrictional method photospheric driving (differential rotation + supergranular diffusion, no flux emergence) Initially, *B*=*B***p** from realistic distribution of magnetic flux

continuous sequence of near force-free equilibria build up of large-scale electric currents, concentrated in magnetic flux ropes

non-uniform distribution of FLH: In open fls, FLH is lost In closed fls, FLH is stored in twisted flux ropes which eventually erupt

Flux rope identification

15-year simulation (1996-2012) of global *B* with the same magnetofrictional method, but with the insertion of 2040 bipolar regions

Flux rope identification through mean unsigned FLH values core+envelope thresholds ref values simulation-specific >1500 eruptive + >2000 non-eruptive flux ropes detected

2008

2012

 $\times 10^{21}$

Solar active region 11158

15 Feb 2011, 01:11 UT

Coronal magnetic field modelling NLFF extrapolation (Thalmann et al. 2019) 215 Mm x 130 Mm x 185 Mm resolution 2'' per pixel, 12 min cadence High-quality reconstruction (high solenoidality), essential for reliable helicity values (Valori et al. 2016)

RFLH during the X-flare of AR 11158

- RFLH highlights important locations for eruptions (e.g., flare ribbons)
- RFLH can be used to compute the helicity of an arbitrarily-shaped ROI
- Green box contains almost the same helicity as whole FOV
- Red box contains half the helicity
-

The AR sample

AR 11158, Feb 2011, 4 days, 115 snapshots, 1X+2M flares AR 11261, Aug 2011, 12 hours, 60 snapshots, 1M flare AR 11429, Mar 2012, 2 days, 47 snapshots, $2X+7M$ flares AR 11520, Jul 2012, 12 hours, 61 snapshots, 1X flare AR 11618, Nov 2012, 6.5 days, 675 snapshots, 4M flares AR 11890, Nov 2013, 7.5 days, 892 snapshots, 3X+4M flares AR 12014, Mar 2014, 12 hours, 60 snapshots, C flares AR 12192, Oct 2014, 4.5 days, 198 snapshots, 2X+9M flares AR 12673, Sep 2017, 11 hours, 48 snapshots, $2X+1M$ flares Moraitis et al. 2024a

9 ARs during rising phase of SC24 >40 solar flares >2000 snapshots

NLFF field extrapolation of *B* (Wiegelmann et al. 2012)

5 th HelAS Summer School, 18 Sep 2024

Criteria:

- B metrics
- Above M-class flares
- Flares have the highest (9 in AR 12192)

Statistics:

- 7 ARs in total (2 north -5 south)
- 11 eruptive $-$ 11 confined flares
- HMI cadence of 12 min \cdot 5 X 17 M-class flares

Selection of ROIs

Magnetic polarity inversion line – **MPIL**

Schrijver 2007 method *B*z threshold 150 G 3x3 dilation window 9" FWHM Gaussian

Helicity polarity inversion line – **HPIL**, based on RFLH 10% of max RFLH threshold

Flare-related helicity profiles

7x relative helicities, of 4 types:

● **Volume method**

 $H_r = \int_V (\mathbf{A} + \mathbf{A}_p) \cdot (\mathbf{B} - \mathbf{B}_p) dV$

● **2x RFLH method, DV/BF gauge**

$$
H_{\rm r,fl}=\oint_{\partial V}h_{\rm r}\,\mathrm{d}\Phi\simeq\int_{z=0}h_{\rm r}\,\mathrm{d}\Phi
$$

● **2x MPIL helicities, DV/BF gauge**

 $H_{\rm r, MPIL} = \int_{\kappa=0} h_{\rm r} W_{\rm MPIL} d\Phi$

● **2x HPIL helicities, DV/BF gauge** $H_{\rm r, HPL} = \int_{\rm m, 0} h_{\rm r} W_{\rm HPL} d\Phi$

5 th HelAS Summer School, 18 Sep 2024

time [min]

flare peak

Superposed helicity profiles

- Superposed epoch analysis of original and normalized profiles
- **Volume** + **fl-helicities** small decrease during flares
- **MPIL helicities** pronounced decrease during flares
- **HPIL helicities** incoherent profiles

Superposed helicity profiles

5 th HelAS Summer School, 18 Sep 2024

- Superposed epoch analysis of original and normalized profiles
- **Volume** + **fl-helicities** small decrease during flares
- **MPIL helicities** pronounced decrease during flares
- **HPIL helicities incoherent profiles**
- Similar results for original and helicity-based *R*parameters (Schrijver 2007)

$$
R = \int W_{\text{MPIL}} \,\mathrm{d}\Phi/\lambda^2
$$

$$
R_{\text{H}} = H_{\text{PIL}}^{1/2}/\lambda^2
$$

PIL helicities in an MHD simulation

$$
H_{\rm r, PIL} = \int_{z=0} h_{\rm r} \, W_{\rm PIL} \, {\rm d}\Phi
$$

Moraitis et al. 2024b

In an MHD flux emergence simulation of jet production:

- PIL helicity follows H_r until the large blowout jet
- It fluctuates much more and is smaller by \sim 25
- Too much jiggling during first two jets
- Peaks of $H_{\text{r,PIL}}$ near the last two jets more pronounced than *H*^r
- Difference between $H_{r,PIL}$ and H_r after large blowout jet \rightarrow increase of the latter due to coronal field
- Confirmation of recent results in a different setup

PIL helicities in an MHD simulation

Moraitis et al. 2024b

In an MHD flux emergence simulation of jet production:

- PIL helicity follows H_r until the large blowout jet
- It fluctuates much more and is smaller by \sim 25
- Too much jiggling during first two jets
- Peaks of $H_{\text{r,PIL}}$ near the last two jets more pronounced than *H*^r
- Difference between $H_{r,PIL}$ and H_r after large blowout jet \rightarrow increase of the latter due to coronal field
- Confirmation of recent results in a different setup
- Computation of *H*_{IPIL} shows similar behaviour

Summary

- (R) FLH a proxy for (relative) helicity density
- RFLH is a useful tool for visualizing important locations for magnetic helicity, but
	- It requires the 3D *B* as input
	- Careful with gauge dependence
- RFLH can be used to identify flux ropes in the global magnetic field of the Sun
- In solar ARs, MPIL relative helicity good eruptivity indicator, better than relative helicity, or traditional flux-based *R*-parameter
- Confirmation of importance of MPIL helicity in a jet-producing MHD flux emergence simulation, indications for MPIL current-carrying helicity as well

FLH references

- Antiochos 1987, ApJ, 312, 886
- Berger 1988, A&A, 201, 355
- Yeates & Hornig 2013, Phys. Plasmas, 20, 012102
- Yeates & Hornig 2014, J Phys. Conf. Series, 544, 012002
- \cdot Russel et al. 2015, Phys. Plasmas, 22, 032106
- Yeates & Hornig 2016, A&A, 594, A98
- Lowder & Yeates 2017, ApJ, 846, 106
- Aly 2018, Fluid Dyn. Res., 50, 011408
- Yeates & Page 2018, J Plasma Phys., 84, 775840602
- Moraitis et al. 2019, A&A, 624, A51
- Moraitis et al. 2021, A&A, 649, A107
- Yeates et al. 2021, Phys. Plasmas, 28, 082904
- Prior & Yeates 2021, J. Phys. A: Math. Theor., 54, 465701
- Moraitis et al. 2024, A&A, 683, A87
- Yeates & Berger 2024, Geophysical Monograph Series, 283, 1
- Moraitis et al. 2024, A&A, in press