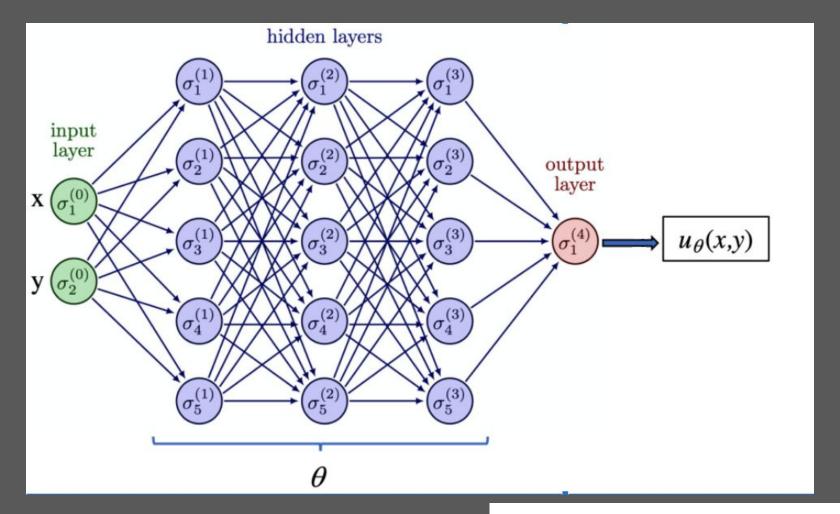


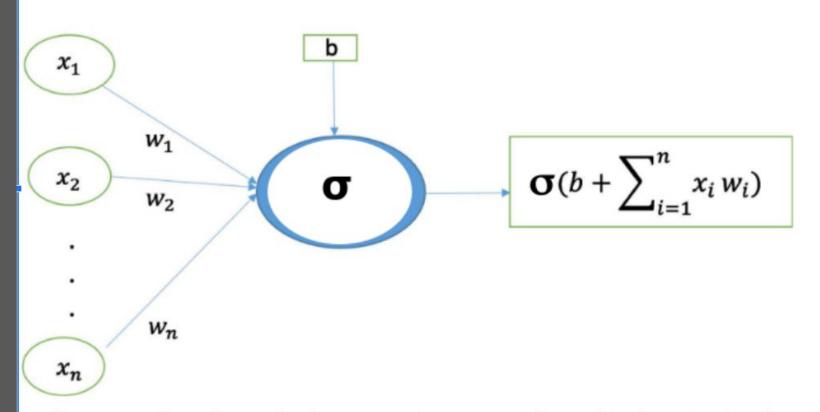
I. Dimitropoulos (PhD student at university of Patras)

I. Contopoulos (Supervisor, Researcher at academy of Athens)

Solution of a Simple Physics Problem with Physics Informed Neural Networks (PINNs)

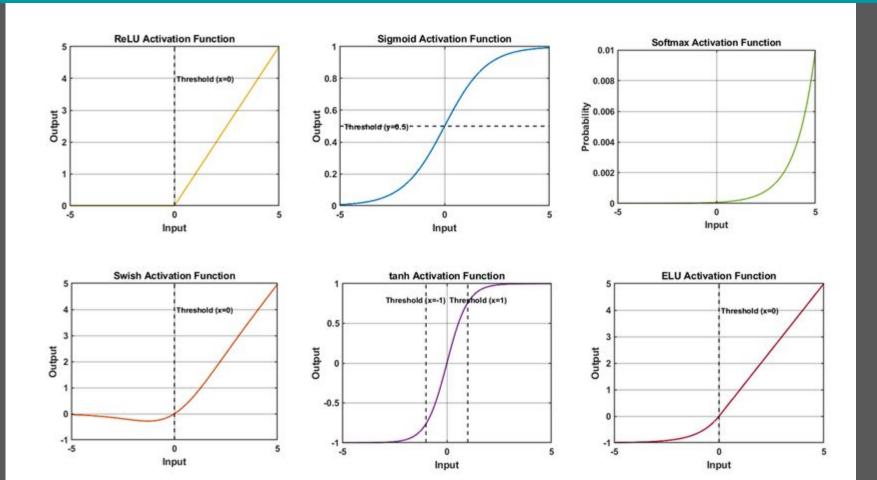


structure of a neuron



A diagram to show the work of a neuron: input x, weights w, bias b, activation function σ

Activation function



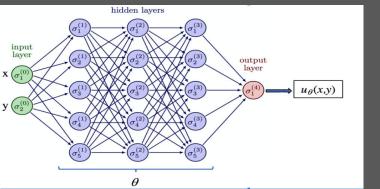
we introduce what is called a <u>multi-layer perceptron</u>, which is one of the most common kind of neural networks. Note that any other statistical model could alternatively be used. The goal is to calibrate its parameters θ such that u_{θ} approximates the target solution u(x). u_{θ} is a non-linear approximation function, organized into a sequence of L+1 layers. The first layer \mathcal{N}^0 is called the <u>input layer</u> and is simply:

 $\mathcal{N}^0(\boldsymbol{x}) = \boldsymbol{x}. \tag{3}$ Each subsequent layer ℓ is parameterized by its weight matrix $\boldsymbol{W}^{\ell} \in \mathbb{R}^{d_{\ell-1} \times d_{\ell}}$ and a bias vector

Each subsequent layer ℓ is parameterized by its weight matrix $\mathbf{W}^{\ell} \in \mathbb{R}^{d_{\ell-1} \times d_{\ell}}$ and a bias vector $\mathbf{b}^{\ell} \in \mathbb{R}^{d_{\ell}}$, with d_{ℓ} defined as the output size of layer ℓ . Layers ℓ with $\ell \in [1, L-1]$ are called hidden layers, and their output value can be defined recursively:

$$\mathcal{N}^{\ell}(\boldsymbol{x}) = \sigma(\boldsymbol{W}^{\ell} \mathcal{N}^{\ell-1}(\boldsymbol{x}) + \boldsymbol{b}^{\ell}), \tag{4}$$

 σ is a non-linear function, generally called activation function.



Hubert Baty, A hands-on introduction to PINNs, 2024

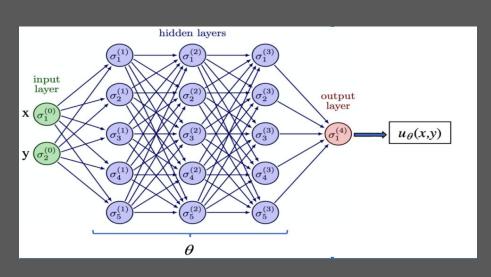
The final layer is the output layer, defined as follows:

$$\mathcal{N}^{L}(\boldsymbol{x}) = \boldsymbol{W}^{L} \mathcal{N}^{L-1}(\boldsymbol{x}) + \boldsymbol{b}^{L}, \tag{5}$$

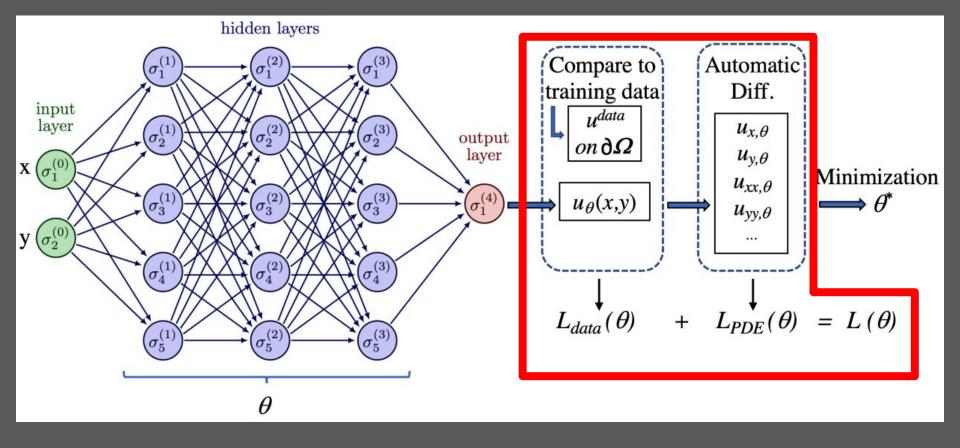
Finally, the full neural network u_{θ} is defined as $u_{\theta}(\mathbf{x}) = \mathcal{N}^{L}(\mathbf{x})$. It can be also written as a sequence of non-linear functions

$$u_{\theta}(\boldsymbol{x}) = (\mathcal{N}^{L} \circ \mathcal{N}^{L-1} \dots \mathcal{N}^{0})(\boldsymbol{x}), \tag{6}$$

where \circ denotes the function composition and $\underline{\theta} = \{\boldsymbol{W}^l, \boldsymbol{b}^l\}_{l=1,L}$ represents the parameters of the network.



Hubert Baty, A hands-on introduction to PINNs, 2024



$$L_{data}(\theta) = \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left| (u_{\theta}(\boldsymbol{x_i}) - u_i^{data})^2 \right|.$$

$$L_{data} \text{ is called the loss function, and equation (7) the learning problem.}$$

In PINNs approach, a specific loss function L_{PDE} can be defined as,

$$L_{PDE}(\theta) = \frac{1}{N_c} \sum_{i=1}^{N_c} |\mathcal{F}(u_{\theta}(\boldsymbol{x_i}))|^2, \qquad (10)$$

where the evaluation of the <u>residual equation</u> is performed on a set of N_c points denoted as x_i . These points are commonly referred to as collocation points. A composite total loss function is typically formulated as follows

$$L(\theta) = \omega_{data} L_{data}(\theta) + \omega_{PDE} L_{PDE}(\theta), \tag{11}$$

where $\underline{\omega_{data}}$ and $\underline{\omega_{PDE}}$ are weights to be assigned to ameliorate potential imbalances between the two partial losses. These weights can be user-specified or automatically tuned.

$$L_{data}(\theta) = \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left| (u_{\theta}(\boldsymbol{x_i}) - \frac{\partial u}{\partial t} = a(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}) \right|$$
ion, and equation (7) the learning. The NN gives us the function u_{θ} and we need:

 L_{data} is called the loss function, and equation (7) the learning

In PINNs approach, a specific loss function L_{PDE} can be define

$$\frac{\partial u_{\theta}}{\partial t} - a\left(\frac{\partial^{2} u_{\theta}}{\partial x^{2}} + \frac{\partial^{2} u_{\theta}}{\partial y^{2}} + \frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right) \to 0$$
so $\mathcal{F}(u_{\theta}) = \frac{\partial u_{\theta}}{\partial t} - a\left(\frac{\partial^{2} u_{\theta}}{\partial x^{2}} + \frac{\partial^{2} u_{\theta}}{\partial y^{2}} + \frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right)$
, (10)

Example for the heat equation

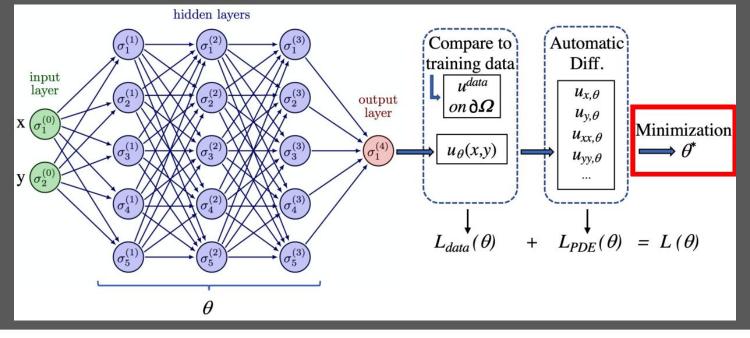
 $\frac{\partial u}{\partial t} = a(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2})$

$$L_{PDE}(\theta) = \frac{1}{N_c} \sum_{i=1}^{N_c} |\mathcal{F}(u_{\theta}(\boldsymbol{x_i}))|^2, \tag{10}$$
 where the evaluation of the residual equation is performed on a set of N_c points denoted as $\boldsymbol{x_i}$.

These points are commonly referred to as collocation points. A composite total loss function is typically formulated as follows

$$L(\theta) = \omega_{data} L_{data}(\theta) + \omega_{PDE} L_{PDE}(\theta), \tag{11}$$

where ω_{data} and ω_{PDE} are weights to be assigned to ameliorate potential imbalances between the two partial losses. These weights can be user-specified or automatically tuned.

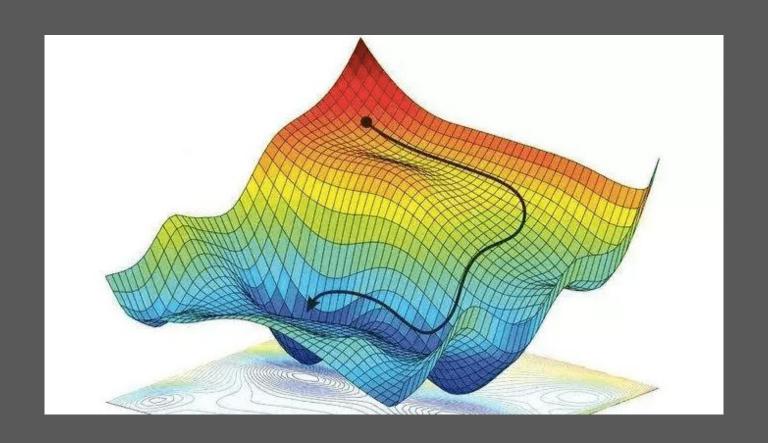


 u_{θ} is considered to be a good approximation of u if predictions $u_{\theta}(x_i)$ are close to target outputs u_i^{data} for every data samples i. We want to minimize the prediction error on the dataset, hence it's natural to search for a value θ^* solution of the following optimization problem:

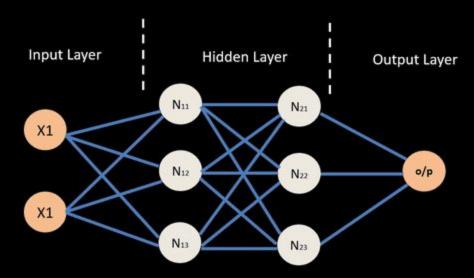
 $rg \min f(x) := \{x \in S \ : \ f(s) \geq f(x) ext{ for all } s \in S\}$

$$\theta^* = \operatorname*{argmin}_{\theta} L_{data}(\theta) \qquad \bigstar \tag{7}$$

Gradient Descent Algorithm



Neural Network - Backpropagation



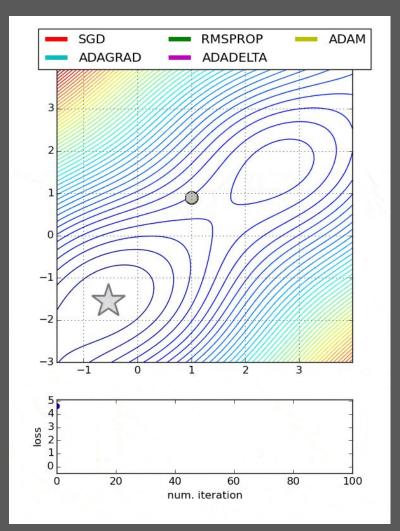
Solving equation (7) is typically accomplished through a (stochastic) gradient descent algorithm. This algorithm depends on automatic differentiation techniques to compute the gradient of the loss L_{data} with respect to the network parameters θ . The algorithm is iteratively applied until convergence towards the minimum is achieved, either based on

a predefined accuracy criterion or a specified maximum iteration number as,

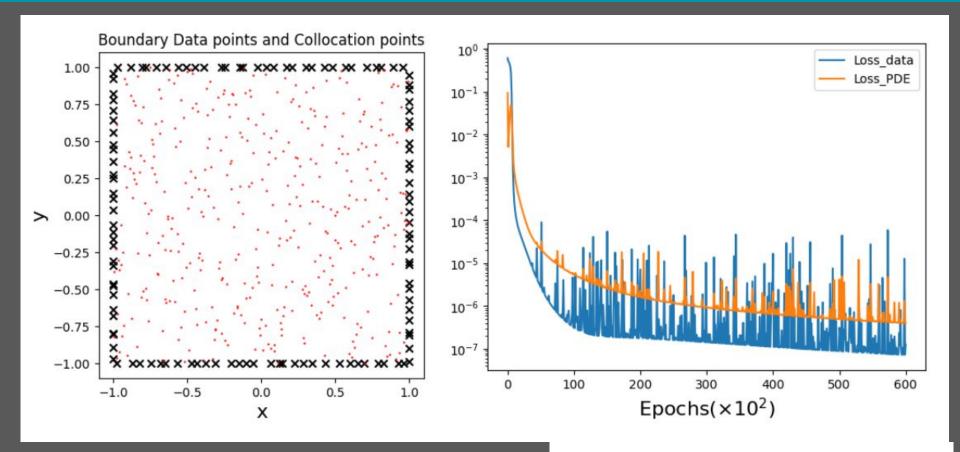
 $\theta^{j+1} = \theta^j - l_r \nabla_\theta L(\theta^j), \tag{9}$

with $L = L_{data}$, for the <u>j</u>-th iteration also called epoch in the literature, where <u>l</u>_r is called the learning rate parameter.

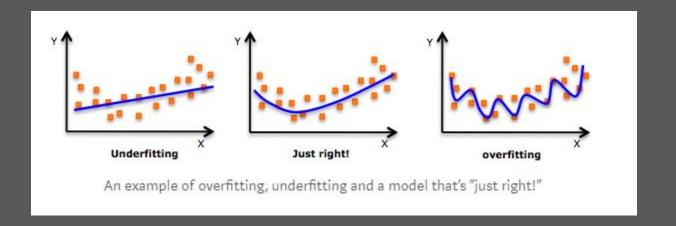
Optimizer



PINNs are mesh-free method!



But you have to be careful with the overfitting...



Heat equation

$$rac{\partial u}{\partial t} = lpha
abla^2 u = lpha \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}
ight)$$

- ullet u=u(x,y,z,t) is temperature as a function of space and time;
- $\frac{\partial u}{\partial t}$ is the rate of change of temperature at a point over time;
- u_{xx} , u_{yy} , and u_{zz} are the second spatial derivatives (thermal conductions) of temperature in the x, y, and z directions, respectively;
- $\alpha \equiv \frac{k}{c_p \rho}$ is the thermal diffusivity, a material-specific quantity depending on the *thermal conductivity k*, the specific heat capacity c_p , and the mass density ρ .

We are going to solve 1D heat equation

$$\frac{\partial T}{\partial t} = \frac{k}{\rho \, \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} \right) = \alpha \left(\frac{\partial^2 T}{\partial x^2} \right)$$

$$t=0, T=50 \ \forall x$$

Boundary conditions:

$$\begin{cases}
x = 0, & T = 60 \\
x = 2H, & T = 60
\end{cases} \quad \forall t > 0$$

Exercise for 2D heat equation

