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structure of a neuron
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A diagram to show the work of a neuron: input x, weights w; bias b, activation functionO




Activation function
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we introduce what is called a multi-layer perceptron. which is one of the most common
kind of neural networks. Note that any other statistical model could alternatively be used. The
goal is to calibrate its parameters 6 such that ug approximates the target solution u(x). wug is a
non-linear approximation function, organized into a sequence of L + 1 layers. The first layer NV is
called the input layer and is simply:

NO(z) = z. (3)

Each subsequent layer ¢ is parameterized by its weight matrix W¥¢ € R%-1*9 and a bias vector
b’ € R%, with d; defined as the output size of layer ¢. Layers ¢ with ¢ € [1, L — 1] are called hidden
layers, and their output value can be defined recursively:

Niz) = o(W N (z) + b°), (4)

o is a non-linear function. generally called activation function.

hidden layers
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The final layer is the output layer, defined as follows:

NE(x) = WENL () + bl (5)

Finally, the full neural network uy is defined as ug(x) = N L(x). Tt can be also written as a sequence
of non-linear functions

ug(x) = WE o N1 NO) (), (6)

where o denotes the function composition and 6 = {Wl 4 bl}lzl, 1, represents the parameters of the
network.
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hidden layers
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L a1, is called the loss function, and equation (7) the learning problem.

In PINNs approach, a specific loss function Lppg can be defined as,

Lppe(0 Z | F (ug(@i))|” (10)

where the evaluation of the residual equation is performed on a set of N. points denoted as x;.

These points are commonly referred to as collocation points. A composite total loss function is
typically formulated as follows

L(0) = wdataLdata(0) + wppDELPDE(0), (11)

where wgqtq and wppg are weights to be assigned to ameliorate potential imbalances between the
two partial losses. These weights can be user-specified or automatically tuned.
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Lgata is called the loss function, and equation (7) the learning The NN gives us the function g and we need:

duy _ 0ug | 0%up | 0y
5 UGt 57+ ) 0

In PINNs approach, a specific loss function Lppg can be deﬁxl : 9??/ " 2
1 u Jgu u
, I 50 F(up) = Ttto ((amzo T 8y29 T ((9220>
Lppe(f Z | F (uo(s)) (10)

where the evaluation of the residual equation is performed on a set of N, points denoted as x;.
These points are commonly referred to as collocation points. A composite total loss function is
typically formulated as follows

L(0) = wdataLdata(0) + wppDELPDE(0), (11)

where wgqtq and wppg are weights to be assigned to ameliorate potential imbalances between the
two partial losses. These weights can be user-specified or automatically tuned.
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hidden layers
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Lyua(6) + Lppg(6) = L(6)

ug is considered to be a good approximation of u if predictions ug(x;) are close

to target outputs uf“t“ for every data samples .. We want to minimize the prediction error on the
dataset, hence it’s natural to search for a value #* solution of the following optimization problem:

0* = argmin L 44, (0) * (7)
7

argmin f(z) := {z € § : f(s) > f(z) for all s € S} Hubert Baty, A hands-on
€S introduction to PINNs, 2024




Gradient Descent Algorithm
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Neural Network — Backpropagation %M

Input Layer Hidden Layer Output Layer

© machinelearningknowledge.ai




Solving equation (7) is typically accomplished through

a (stochastic) gradient descent algorithm. This algorithm depends on automatic differentiation

techniques to compute the gradient of the loss L., with respect to the network parameters . The
algorithm is iteratively applied until convergence towards the minimum is achieved, either based on

a predefined accuracy criterion or a specified maximum iteration number as,

67t =97 — 1. VyL(67),

with L = Lga,, for the j-th iteration also called epoch in the literature, where [, is called the learn-
ing rate parameter.
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PINNs are mesh-free method!

Boundary Data points and Collocation points
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But you have to be careful with the overfitting...

X X
Underfitting Just right! overfitting

An example of overfitting, underfitting and a model that’s “just right!”




Heat equation

» u = u(z,y, 2,t) is temperature as a function of space and time;

. % is the rate of change of temperature at a point over time;
* Ugg, Uy, and u,, are the second spatial derivatives (thermal conductions) of temperature in the z, y, and 2

directions, respectively;

e = ﬁ is the thermal diffusivity, a material-specific quantity depending on the thermal conductivity k, the
specific heat capacity c,, and the mass density p.

Wikipedia: Heat equation




We are going to solve 1D heat equation
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Initial condition: [ = O T =50V x
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Boundary conditions:
X =0, T =60

x=2H, T =60 } Vi




Exercise for 2D heat equation




