Outline Burger's Equation Numerical Derivative Flux Limiter (Minmod) 0 00 00 00 00

Numerical Solution of Burger's Equation The Minmod Flux Limiter

Angelos Michailidis¹, Vangelis Karantanis², Maria Grigoriou², Nikolas Ignatiadis², Charalampos Trifyllis²

¹ National and Kapodistrian University of Athens ² University of Ioannina

Ioannina, September 20, 2024

References

Outline •	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions 0	References O
Outl	ine				

イロト イロト イヨト イヨト 三日

Outline •	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions	References O
Outl	ine				

Angelos Michailidis¹, Vangelis Karantanis², Maria Grigoriou², Nikolas Ignatiadis², Charalampos Trifyllis²

臣

イロト イポト イヨト イヨト

Outline •	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions O	References O

Outline

- Burger's Equation
- Numerical Derivative

Angelos Michailidis¹, Vangelis Karantanis², Maria Grigoriou², Nikolas Ignatiadis², Charalampos Trifyllis²

э

イロト イヨト イヨト

Outline •	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions O	References 0

Outline

- Burger's Equation
- Numerical Derivative
- Flux Limiter (Minmod)

ヨト イヨト

Outline •	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions	References 0

Outline

- Burger's Equation
- Numerical Derivative
- Flux Limiter (Minmod)
- Summary and Cocnlusions

- - - - -

The Burger's Equation

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} + \eta \frac{\partial^2 \Psi}{\partial x^2} \tag{1}$$

[Bonkile et al., 2023] In our case (for minmod flux limiter)

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} \tag{2}$$

Angelos Michailidis¹, Vangelis Karantanis², Maria Grigoriou², Nikolas Ignatiadis², Charalampos Trifyllis²

∃ ► < ∃ ►</p>

The Burger's Equation

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} + \eta \frac{\partial^2 \Psi}{\partial x^2} \tag{1}$$

[Bonkile et al., 2023] In our case (for minmod flux limiter)

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} \tag{2}$$

Transportation equation

ヨト イヨト

The Burger's Equation

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} + \eta \frac{\partial^2 \Psi}{\partial x^2} \tag{1}$$

[Bonkile et al., 2023] In our case (for minmod flux limiter)

$$\frac{\partial \Psi}{\partial t} = -\Psi \frac{\partial \Psi}{\partial x} \tag{2}$$

- Transportation equation
- Trasportation speed of Ψ depends on Ψ

∃ ► < ∃ ►</p>

00

Use of Burger's Equation in Astrophysical Plasmas

- Force free fields with poloidal and toroidal components
- The simplest non linear wave equation
- Describes convection and diffusion
- Converts to transport equation for $\eta = 0$

Outline	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod)	Summary and Conclusions	References
0		●0000	00	O	O

э

글 > - - 글 >

Outline	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod)	Summary and Conclusions	References
0		●0000	00	O	O

forward derivative

$$x' = \frac{x_{i+1} - x_i}{\delta x}$$

provides information in front of the point of interest

$$\xrightarrow{x_{i-1}} \overbrace{\delta x} \xrightarrow{x_i} \overbrace{\delta x} \xrightarrow{x_{i+1}} \xrightarrow{x}$$

forward derivative

$$x' = \frac{x_{i+1} - x_i}{\delta x}$$

provides information in front of the point of interest

backward derivative

$$x' = \frac{x_i - x_{i-1}}{\delta x}$$

provides information behind the point of interest

$$\xrightarrow{x_{i-1}} \overbrace{\delta x} \xrightarrow{x_i} \overbrace{\delta x} \xrightarrow{x_{i+1}} \xrightarrow{x}$$

forward derivative

$$x' = \frac{x_{i+1} - x_i}{\delta x}$$

provides information in front of the point of interest

backward derivative

$$x' = \frac{x_i - x_{i-1}}{\delta x}$$

provides information behind the point of interest

central derivative

$$x' = \frac{x_{i+1} - x_{i-1}}{2\delta x}$$

the better approach but sensitive to extreme variations

Forward Derivative

Initial condition: Gaussian

Periodic Boundary Conditions

Figure: Time evolution of Burger's equation using numerical forward derivative. Top: steps=1. Middle: steps=100. Bottom: steps=200

Backward Derivative

Initial condition: Gaussian

Periodic Boundary Conditions

Figure: Time evolution of Burger's equation using numerical backward derivative. Top: steps=1. Middle: steps=100. Bottom: steps=1000

Outline 0	Burger's Equation	Numerical Derivative	Flux Limiter (Minmod) 00	Summary and Conclusions 0	References O

Central Derivative

Initial condition: Gaussian

Periodic Boundary Conditions

Figure: Time evolution of Burger's equation using numerical central derivative. Top: steps=1. Middle: steps=100. Bottom: steps=1000

Backward:

We miss the points in front

Forward:

We miss the points at the back

Central:

Half of the info is from the points the wave has not reached yet

∃ ► < ∃ ►</p>

Flux Limiter (Minmod)

Flux limiter: Use ideal proportions of backward and forward derivative

Minmod:

$$\Phi_{mm}(x) = max[0, min(1, x)] \tag{3}$$

< □ > < 同 >

A B > A B >

[Durran, 2010]

Flux Limiter (Minmod)

Flux Limiter (Minmod)

Figure: Time evolution of Burger's equation using minmod flux limiter

Flux Limiter (Minmo 00

< □ > < 同 >

ヨト イヨト

Summary and Conclusions

 We can use numerical analysis to solve problems involving the Burger equation

E 6 4 E 6

- We can use numerical analysis to solve problems involving the Burger equation
- There are 3 numerical derivatives (forward, backward, central) but each has its own disadvantages due to the fact that they do not calculate the derivative to the actual point of interest

- We can use numerical analysis to solve problems involving the Burger equation
- There are 3 numerical derivatives (forward, backward, central) but each has its own disadvantages due to the fact that they do not calculate the derivative to the actual point of interest
- The use of flux limiters can help deal with this problem, but there are other disadvantages introduced

- We can use numerical analysis to solve problems involving the Burger equation
- There are 3 numerical derivatives (forward, backward, central) but each has its own disadvantages due to the fact that they do not calculate the derivative to the actual point of interest
- The use of flux limiters can help deal with this problem, but there are other disadvantages introduced
- The use of the minmod flux limiter eliminates the discontinuities but it alters the wave front due to information diffusion

< □ > < 同 >

E 6 4 E 6

References I

Bonkile, M. P., Awasthi, A., Lakshmi, C., Mukundan, V., and Aswin, V. S. (2023).

A systematic literature review of burgers' equation with recent advances.

Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 133:21-40.

Preprint.

Durran, D. (2010).

Numerical Methods for Fluid Dynamics: With Applications to Geophysics.

Texts in Applied Mathematics. Springer New York.

S. H, L. (2012).

Numerical Analysis of Partial Differential Equations.

Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley.

Angelos Michailidis¹, Vangelis Karantanis², Maria Grigoriou², Nikolas Ignatiadis², Charalampos Trifyllis²

Hel.A.S MHD Summer School 2024

★ ∃ ► < ∃ ►</p>