

Neutron star magnetospheres with classical and modern methods

5th Hel.A.S Summer School - MHD in Astrophysics

Petros Stefanou

September 20, 2024

BLADES

DES

Table of Contents

- ► Introduction
- Physical framework
- ► 3D Magnetars
- ► Magnetars with PINNs
- ► Pulsars with PINNs
- ► Future plans

Table of Contents

► Introduction

- Physical framework
- ▶ 3D Magnetars
- ► Magnetars with PINNs
- ► Pulsars with PINNs
- ► Future plans

Figure 1: The $P - \dot{P}$ diagram (Harding, 2013)

Magnetars

- Slow rotation $P\gtrsim 1~{
 m s}$
- Extreme magnetic field $B\gtrsim 10^{14}~{
 m G}$
- Young age
- Powered by magnetic field decay

Figure 1: The $P - \dot{P}$ diagram (Harding, 2013)

Magnetars

- Slow rotation $P\gtrsim 1~{
 m s}$
- Extreme magnetic field $B\gtrsim 10^{14}~{
 m G}$
- Young age
- Powered by magnetic field decay

Pulsars

- Fast rotation P < 1 s
- Magnetic field $B\sim 10^{12}~{
 m G}$
- Powered by rotational

Figure 1: The $P - \dot{P}$ diagram (Harding, 2013)

Observations 1 Introduction

Observations 1 Introduction

Magnetars

- Pulsed X-ray thermal emission
- Transient X-ray activity
 - Short duration bursts
 - Long duration outbursts
 - Highly energetic flares
- Reconfiguration of magnetic field
- Release of energy

Observations 1 Introduction

Magnetars

- Pulsed X-ray thermal emission
- Transient X-ray activity
 - Short duration bursts
 - Long duration outbursts
 - Highly energetic flares
- Reconfiguration of magnetic field
- Release of energy

Pulsars

- Pulsed non-thermal γ -ray emission
- Non-ideal regions
- Acceleration of particles

Magnetosphere

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Magnetosphere 1 Introduction

Figure 2: An artist's conception of a NS

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Magnetosphere 1 Introduction

Figure 2: An artist's conception of a NS

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Characteristics

- Large scale field is roughly dipolar
- Charged particles move along field lines
- Corotation with the star
- Presence of toroidal fields
- Non-thermal emission

Table of Contents2 Physical framework

- ► Introduction
- Physical framework
- ▶ 3D Magnetars
- ► Magnetars with PINNs
- ► Pulsars with PINNs
- ► Future plans

Force-free approximation

2 Physical framework

Force-free approximation

Assumptions

- Dynamics is dominated by the electromagnetic field
- Gravity, plasma pressure and particle inertia are negligible
- Quasi-stationary regime

Definitions

$$egin{aligned} lpha &= rac{4\pi}{c} \left(m{J} -
ho_e m{c} m{eta}
ight) \cdot rac{m{B}}{B^2} \ m{eta} &= rac{m{\Omega} imes m{r}}{c} \end{aligned}$$

3D EquationsProperties $\nabla \times (\boldsymbol{B} - \beta^2 \boldsymbol{B}_p) = \alpha \boldsymbol{B}$ • α is constant along field lines $\boldsymbol{B} \cdot \boldsymbol{\nabla} \alpha = 0$ • Implicitly nonlinear equation• Equilibrium solutions

Table of Contents3 3D Magnetars

► Introduction

Physical framework

► 3D Magnetars

- ► Magnetars with PINNs
- ▶ Pulsars with PINNs
- ► Future plans

Motivation 3 3D Magnetars

Motivation

Figure 3: A sketch of a magnetar (Beloborodov, 2013)

10/31

Motivation 3 3D Magnetars

Figure 3: A sketch of a magnetar (Beloborodov, 2013)

Context

- Internal processes gradually displace field lines
- Energy and helicity flow into the magnetosphere
- Twisted magnetic loops appear in localised regions
- Critical point
- Release of magnetic energy
- Only axisymmetric solutions ightarrow novelty

Non-rotating limit

$$\boldsymbol{\nabla} \times \boldsymbol{B} = \alpha \boldsymbol{B}$$
$$\boldsymbol{B} \cdot \boldsymbol{\nabla} \alpha = 0$$

Properties

• *J* || *B*

- Nonlinear system if $\alpha \neq \text{const}$
- Only numerical solutions

The Grad-Rubin method

3 3D Magnetars

Hyperbolic part

$$\mathbf{B}^{(k)} \cdot \nabla \alpha^{(k+1)} = \mathbf{0}$$

- Solves for α with a given ${\pmb B}$
- Characteristics Method

The Grad-Rubin method

3 3D Magnetars

Hyperbolic part	Elliptic part
$\pmb{B}^{(k)}\cdot abla lpha^{(k+1)}=0$	$\nabla^2 \boldsymbol{A}^{(k+1)} = -\alpha^{(k+1)} \boldsymbol{B}^{(k)}$
• Solves for α with a given ${\pmb B}$	• Solves for $oldsymbol{A}$ with a given $lpha$
Characteristics Method	Scheduled Relaxation Jacobi method

Model 3 3D Magnetars

Model 3 3D Magnetars

Features

$$\alpha_{\mathcal{S}^+}(\theta,\phi) = \alpha_0 \exp\left[\frac{-(\theta-\theta_1)^2 - (\phi-\phi_1)^2}{2\sigma^2}\right]$$

- Two hot spots connected by a twisted loop
- One spot has a Gaussian profile
- Dipole background
- Rest of the magnetosphere is current-free

Figure 4: A model with two hotspots

Results 3 3D Magnetars

Results 3 3D Magnetars

Figure 5: A selection of models for different values of $\alpha_0, \theta_1, \sigma$

Results 3 3D Magnetars

Figure 5: A selection of models for different values of $\alpha_0, \theta_1, \sigma$

Figure 6: Dependence of energy, helicity and twist on $\alpha_0, \theta_1, \sigma$

Discussion 3 3D Magnetars

Key points

- For certain values of $\alpha_0, \theta_1, \sigma$ the solver does not converge
- Non-existence of solution \rightarrow release of energy
- Excess energy is enough to feed X-ray activity
- Currents heat the surface \rightarrow X-ray pulses

Key points

- For certain values of $\alpha_0, \theta_1, \sigma$ the solver does not converge
- Non-existence of solution \rightarrow release of energy
- Excess energy is enough to feed X-ray activity
- Currents heat the surface \rightarrow X-ray pulses

Figure 7: Effective temperature of the hotspots at the surface of the star

Table of Contents4 Magnetars with PINNs

- ► Introduction
- Physical framework
- ▶ 3D Magnetars
- ► Magnetars with PINNs
- ► Pulsars with PINNs
- ► Future plans

PINNS 4 Magnetars with PINNs

PINNs 4 Magnetars with PINNs

Basics

- Proposed in 1997
- Solve PDEs using neural networks
- Input: a set of points in some domain
- Output: an approximate solution
- Loss: the residuals of the PDE describing the system

Figure 8: A physics-informed neural network

Motivation 4 Magnetars with PINNs

Relevance

New, promising, exciting, actively developing method for solving PDEs

Relevance

New, promising, exciting, actively developing method for solving PDEs

Advantages

- Meshless
- Scalable
- Generalisable
- Very fast once trained

Relevance

New, promising, exciting, actively developing method for solving PDEs

Advantages	Disadvantages (for now)	
Meshless	Precision	
Scalable	• Efficiency	
Generalisable	Rigorous mathematical support	
Very fast once trained	Relies on trial and error	

Motivation 4 Magnetars with PINNs

Context

- PINNs for elliptic problems
- Axisymmetric magnetars
- Evaluate multiple solutions
- Identify possible caveats

Novelty

- Train once for a family of solutions
- Treat boundary conditions and source terms as **inputs** to the PINN
- Connect dissmilar domains

Equations 4 Magnetars with PINNs

Equations 4 Magnetars with PINNs

Axisymmetric magnetar magnetospheres

• Compactified polar coordinates $ightarrow q = rac{R}{r}, \mu = \cos heta$

• Axisymmetry
$$\rightarrow \pmb{B} = rac{q}{\sqrt{1-\mu^2}}(\pmb{\nabla}\mathcal{P} imes \hat{\phi} + \mathcal{T}\hat{\phi})$$

• Grad-Shafranov equation

$$q^2 rac{\partial}{\partial q} \left(q^2 rac{\partial \mathcal{P}}{\partial q}
ight) + \left(1 - \mu^2
ight) q^2 rac{\partial^2 \mathcal{P}}{\partial \mu^2} + \mathcal{T} rac{d\mathcal{T}}{d\mathcal{P}} = 0$$

• The solution is completely determined by the surface boundary condition

$$\mathcal{P}(\textbf{q}=1,\mu) = \left(1-\mu^2\right)\sum_{l=1}^{l_{\max}}\frac{b_l}{l}P_l'(\mu)$$

Results 4 Magnetars with PINNs

Figure 9: Loss function vs. iterations

	$E_{\mathcal{P}}$	E_{B_r}	$E_{B_{\theta}}$	E_B
L_1 norm	0.017	0.017	0.025	0.015
L_2 norm	0.019	0.023	0.045	0.023

Figure 10: Contours of P

Results 4 Magnetars with PINNs

Application

- Couple magnetothermal evolution with a force-free magnetosphere
- Currents can thread the surface

Figure 11: Snapshot of magnetic field and electric current

Discussion 4 Magnetars with PINNs

Discussion 4 Magnetars with PINNs

Key points

- PINNs are suitable for elliptic problems
- Relatively accurate and reliable
- Can be trained for arbitrary solutions \rightarrow speed advantage
- Errors can be estimated through discretisation
- Connect regions with vastly different physical conditions
- New solutions for magnetothermal evolution
- Pave the road for extension to 3D

Table of Contents 5 Pulsars with PINNs

► Introduction

- Physical framework
- ▶ 3D Magnetars
- ► Magnetars with PINNs

► Pulsars with PINNs

► Future plans

Motivation 5 Pulsars with PINNs

Context

- Rotation is important
- Current-sheets
- \mathcal{T} must be consistent, not prescribed
- Additional constraints
- Axisymmetry

Pulsar equation

$$\left(1-eta^2
ight)\Delta_{\mathsf{GS}}\mathcal{P}+2eta^2q^2\left(qrac{\partial P}{\partial q}+\murac{\partial \mathcal{P}}{\partial \mu}
ight)+\mathcal{T}rac{d\mathcal{T}}{d\mathcal{P}}=0$$

Figure 12: A sketch of a pulsar (Philippov and Kramer, 2022)

Results 5 Pulsars with PINNs

Figure 14: A pulsar magnetosphere with the Y-point close to the star

Results 5 Pulsars with PINNs

Figure 16: A close-up near the surface

Discussion 5 Pulsars with PINNs

Discussion 5 Pulsars with PINNs

$_{28/31}$ Figure 17: T(P) for various models

Models

- Excess energy < 3%
- Models with fixed *P*_c have less energy
- Area represents luminosity
- Luminosity < 3L_{dip}
- For models with fixed *P_c*, not all Poynting flux escapes

Table of Contents 6 Future plans

- ► Introduction
- Physical framework
- ▶ 3D Magnetars
- ► Magnetars with PINNs
- ► Pulsars with PINNs
- ► Future plans

Ongoing and new projects 6 Future plans

PINNs

- Deeper understanding of how they work
- Improve PINN solvers

Magnetars

- Study stability of solutions
- Solve the 3D problem with PINNs
- Couple with 3D interior evolution

Pulsars

• Solve the full 3D problem

New projects

- Include magnetospheric radiation mechanisms
- Extend PINNs to other problems

Neutron star magnetospheres with classical and modern methods

Thank you

- Stefanou, Petros, Jose A. Pons, and Pablo Cerdá-Durán (Feb. 2023). "Modelling 3D force-free neutron star magnetospheres". In: MNRAS 518.4, pp. 6390–6400. DOI: 10.1093/mnras/stac3570. arXiv: 2211.08957 [astro-ph.HE].
- Urbán, Jorge F., Petros Stefanou, Clara Dehman, and José A. Pons (Sept. 2023).
 "Modelling force-free neutron star magnetospheres using physics-informed neural networks". In: MNRAS 524.1, pp. 32–42. DOI: 10.1093/mnras/stad1810. arXiv: 2303.11968 [astro-ph.HE].
- Stefanou, Petros, Jorge F. Urbán, and José A. Pons (Nov. 2023). "Solving the pulsar equation using physics-informed neural networks". In: MNRAS 526.1, pp. 1504–1511. DOI: 10.1093/mnras/stad2840. arXiv: 2309.06410 [astro-ph.HE].

Table of Contents

10 Backup slides

Optimisation process

- Trainable parameters ${f \Omega}$
- Loss function $\mathcal{J} = || \pmb{u}(\pmb{\Omega}) \tilde{\pmb{u}} ||$
- $oldsymbol{\Omega}$ are adjusted so that $\mathcal{J}(oldsymbol{\Omega})
 ightarrow 0$
- Corrections to ${f \Omega}$ based on $abla_{{f \Omega}}{\cal J}$
- Automatic differentiation

Figure 18: A neural network

Results 10 Backup slides

Force-free case

- $\mathcal{T}(\mathcal{P}) = s_1 \mathcal{P} + s_2 \mathcal{P}^2$
- Up to seven multipoles $1 \leq l \leq 7$
- s_1, s_2 so that solutions exist
- Estimate error through discretisation

Figure 19: Discretisation error