

Neutron star magnetospheres with classical and modern methods

5 *th* Hel.A.S Summer School - MHD in Astrophysics

[Petros Stefanou](mailto:petros.stefanou@ua.es)

September 20, 2024

MINISTERIO
DE CIENCIA **ININIOVACIÓN** Financiado o rmanciado po
la Unión Furoi

Table of Contents

- \blacktriangleright [Introduction](#page-2-0)
- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

Table of Contents 1 Introduction

\blacktriangleright [Introduction](#page-2-0)

- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

Magnetars and Pulsars 1 Introduction

Magnetars and Pulsars 1 Introduction

Figure 1: The $P - P$ diagram (Harding, [2013\)](#page-0-0)

Magnetars and Pulsars

1 Introduction

Magnetars

- Slow rotation $P \geq 1$ s
- Extreme magnetic field $B \ge 10^{14}$ G
- Young age
- Powered by magnetic field decay

Figure 1: The $P - P$ diagram (Harding, [2013\)](#page-0-0)

Magnetars and Pulsars

1 Introduction

Magnetars

- Slow rotation *P* ≳ 1 s
- Extreme magnetic field $B \geq 10^{14}$ G
- Young age
- Powered by magnetic field decay

Pulsars

- Fast rotation $P < 1$ s
- Magnetic field $B \sim 10^{12}$ G
- Powered by rotational

Figure 1: The $P - P$ diagram (Harding, [2013\)](#page-0-0)

Observations 1 Introduction

Observations 1 Introduction

Magnetars

- Pulsed X-ray thermal emission
- Transient X-ray activity
	- Short duration bursts
	- Long duration outbursts
	- Highly energetic flares
- Reconfiguration of magnetic field
- Release of energy

Observations 1 Introduction

Magnetars

- Pulsed X-ray thermal emission
- Transient X-ray activity
	- Short duration bursts
	- Long duration outbursts
	- Highly energetic flares
- Reconfiguration of magnetic field
- Release of energy

Pulsars

- Pulsed non-thermal γ -ray emission
- Non-ideal regions
- Acceleration of particles

Magnetosphere 1 Introduction

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Magnetosphere 1 Introduction

Figure 2: An artist's conception of a NS

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Magnetosphere 1 Introduction

Figure 2: An artist's conception of a NS

Definition

The region surrounding the neutron star where plasma flows in its magnetic field

Characteristics

- Large scale field is roughly dipolar
- Charged particles move along field lines
- Corotation with the star
- Presence of toroidal fields
- Non-thermal emission

Table of Contents 2 Physical framework

▶ [Introduction](#page-2-0)

▶ [Physical framework](#page-14-0)

- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

Force-free approximation

Force-free approximation

Table of Contents 3 3D Magnetars

▶ [Introduction](#page-2-0)

- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

Motivation 3 3D Magnetars

Motivation 3 3D Magnetars

Figure 3: A sketch of a magnetar (Beloborodov, [2013\)](#page-0-0)

Motivation 3 3D Magnetars

Figure 3: A sketch of a magnetar (Beloborodov, [2013\)](#page-0-0)

Context

- Internal processes gradually displace field lines
- Energy and helicity flow into the magnetosphere
- Twisted magnetic loops appear in localised regions
- Critical point
- Release of magnetic energy
- Only axisymmetric solutions \rightarrow novelty

$$
\nabla \times \mathbf{B} = \alpha \mathbf{B}
$$

$$
\mathbf{B} \cdot \nabla \alpha = 0
$$

Properties

• *J* ∥ *B*

- Nonlinear system if $\alpha \neq const$
- Only numerical solutions

The Grad-Rubin method

3 3D Magnetars

Hyperbolic part

$$
\pmb B^{(k)} \cdot \nabla \alpha^{(k+1)} = 0
$$

- Solves for α with a given **B**
- *Characteristics* Method

The Grad-Rubin method

3 3D Magnetars

Model 3 3D Magnetars

Features

$$
\alpha_{\mathcal{S}^+}(\theta,\phi) = \alpha_0 \exp \left[\frac{-(\theta - \theta_1)^2 - (\phi - \phi_1)^2}{2\sigma^2} \right]
$$

- Two hot spots connected by a twisted loop
- One spot has a Gaussian profile
- Dipole background
- Rest of the magnetosphere is current-free

Figure 4: A model with two hotspots

Results 3 3D Magnetars

Results 3 3D Magnetars

Figure 5: A selection of models for different values of $\alpha_0, \theta_1, \sigma$

Results 3 3D Magnetars

Figure 5: A selection of models for different values of $\alpha_0, \theta_1, \sigma$ twist on $\alpha_0, \theta_1, \sigma$

Figure 6: Dependence of energy, helicity and

Discussion 3 3D Magnetars

Key points

- For certain values of α_0 , θ_1 , σ the solver does not converge
- Non-existence of solution \rightarrow release of energy
- Excess energy is enough to feed X-ray activity
- Currents heat the surface \rightarrow X-ray pulses

Key points

- For certain values of α_0 , θ_1 , σ the solver does not converge
- Non-existence of solution \rightarrow release of energy
- Excess energy is enough to feed X-ray activity
- Currents heat the surface \rightarrow X-ray pulses

Figure 7: Effective temperature of the hotspots at the surface of the star

Table of Contents 4 Magnetars with PINNs

- ▶ [Introduction](#page-2-0)
- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

PINNs 4 Magnetars with PINNs

PINNs 4 Magnetars with PINNs

Basics

- Proposed in 1997
- Solve PDEs using neural networks
- Input: a set of points in some domain
- Output: an approximate solution
- Loss: the residuals of the PDE describing the system

Figure 8: A physics-informed neural network

Motivation 4 Magnetars with PINNs

18/31

Relevance

New, promising, exciting, actively developing method for solving PDEs

Relevance

New, promising, exciting, actively developing method for solving PDEs

Advantages

- Meshless
- Scalable
- Generalisable
- Very fast once trained

Relevance

New, promising, exciting, actively developing method for solving PDEs

Motivation 4 Magnetars with PINNs

19/31

Context

- PINNs for elliptic problems
- Axisymmetric magnetars
- Evaluate multiple solutions
- Identify possible caveats

Novelty

- Train **once** for a family of solutions
- Treat boundary conditions and source terms as **inputs** to the PINN
- Connect dissmilar domains

Equations 4 Magnetars with PINNs

Equations 4 Magnetars with PINNs

Axisymmetric magnetar magnetospheres

- Compactified polar coordinates $\rightarrow q = \frac{R}{r}$ $\frac{\pi}{r}, \mu = \cos \theta$
- Axisymmetry \rightarrow **B** = $\frac{q}{\sqrt{1}}$ $\frac{q}{1-\mu^2}(\boldsymbol{\nabla}\mathcal{P}\times\hat{\phi}+\mathcal{T}\hat{\phi})$
- Grad-Shafranov equation

$$
q^2 \frac{\partial}{\partial q} \left(q^2 \frac{\partial \mathcal{P}}{\partial q} \right) + \left(1 - \mu^2 \right) q^2 \frac{\partial^2 \mathcal{P}}{\partial \mu^2} + \mathcal{T} \frac{d \mathcal{T}}{d \mathcal{P}} = 0
$$

• The solution is completely determined by the surface boundary condition

$$
\mathcal{P}(q=1,\mu) = \left(1 - \mu^2\right) \sum_{l=1}^{l_{\text{max}}} \frac{b_l}{l} P_l'(\mu)
$$

Results 4 Magnetars with PINNs

Figure 9: Loss function vs. iterations

Figure 10: Contours of P 21/31

Results 4 Magnetars with PINNs

Application

- Couple magnetothermal evolution with a force-free magnetosphere
- Currents can thread the surface

 $22/31$ Figure 11: Snapshot of magnetic field and electric current

Discussion 4 Magnetars with PINNs

Discussion 4 Magnetars with PINNs

Key points

- PINNs are suitable for elliptic problems
- Relatively accurate and reliable
- Can be trained for arbitrary solutions \rightarrow speed advantage
- Errors can be estimated through discretisation
- Connect regions with vastly different physical conditions
- New solutions for magnetothermal evolution
- Pave the road for extension to 3D

Table of Contents 5 Pulsars with PINNs

▶ [Introduction](#page-2-0)

- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)

▶ [Pulsars with PINNs](#page-48-0)

▶ [Future plans](#page-55-0)

Motivation

Context

- Rotation is important
- Current-sheets
- τ must be consistent, not prescribed
- Additional constraints
- **Axisymmetry**

Pulsar equation

$$
\left(1-\beta^2\right)\Delta_{\text{GS}}\mathcal{P}+2\beta^2q^2\left(q\frac{\partial P}{\partial q}+\mu\frac{\partial \mathcal{P}}{\partial \mu}\right)+\mathcal{T}\frac{dT}{d\mathcal{P}}=0
$$

Figure 12: A sketch of a pulsar (Philippov and Kramer, [2022\)](#page-0-0) 25/31

Results 5 Pulsars with PINNs

Results 5 Pulsars with PINNs

Discussion

Discussion 5 Pulsars with PINNs

Models

- Excess energy $< 3\%$
- Models with fixed *P^c* have less energy
- Area represents luminosity
- Luminosity < 3*Ldip*
- For models with fixed *Pc*, not all Poynting flux escapes

 $_{\mathsf{28/31}}$ Figure 17: $T(P)$ for various models

Table of Contents 6 Future plans

- ▶ [Introduction](#page-2-0)
- ▶ [Physical framework](#page-14-0)
- ▶ [3D Magnetars](#page-17-0)
- ▶ [Magnetars with PINNs](#page-33-0)
- ▶ [Pulsars with PINNs](#page-48-0)
- ▶ [Future plans](#page-55-0)

Ongoing and new projects 6 Future plans

PINNs

- Deeper understanding of how they work
- Improve PINN solvers

Magnetars

- Study stability of solutions
- Solve the 3D problem with PINNs
- Couple with 3D interior evolution

Pulsars

• Solve the full 3D problem

New projects

- Include magnetospheric radiation mechanisms
- Extend PINNs to other problems

Neutron star magnetospheres with classical and modern methods

Thank you

- F Stefanou, Petros, Jose A. Pons, and Pablo Cerdá-Durán (Feb. 2023). "Modelling 3D force-free neutron star magnetospheres". In: *MNRAS* 518.4, pp. 6390–6400. DOI: [10.1093/mnras/stac3570](https://doi.org/10.1093/mnras/stac3570). arXiv: [2211.08957 \[astro-ph.HE\]](https://arxiv.org/abs/2211.08957).
- Urbán, Jorge F., Petros Stefanou, Clara Dehman, and José A. Pons (Sept. 2023). 矗 "Modelling force-free neutron star magnetospheres using physics-informed neural networks". In: *MNRAS* 524.1, pp. 32–42. DOI: [10.1093/mnras/stad1810](https://doi.org/10.1093/mnras/stad1810). arXiv: [2303.11968 \[astro-ph.HE\]](https://arxiv.org/abs/2303.11968).
- Stefanou, Petros, Jorge F. Urbán, and José A. Pons (Nov. 2023). "Solving the pulsar Ħ equation using physics-informed neural networks". In: *MNRAS* 526.1, pp. 1504–1511. DOI: [10.1093/mnras/stad2840](https://doi.org/10.1093/mnras/stad2840). arXiv: [2309.06410 \[astro-ph.HE\]](https://arxiv.org/abs/2309.06410).

Table of Contents

10 Backup slides

Optimisation process

- Trainable parameters Ω
- Loss function $\mathcal{J} = ||\mathbf{u}(\Omega) \tilde{\mathbf{u}}||$
- Ω are adjusted so that $\mathcal{J}(\Omega) \to 0$
- Corrections to Ω based on $\nabla_{\Omega} \mathcal{J}$
- Automatic differentiation

Figure 18: A neural network

Results 10 Backup slides

Force-free case

- $\mathcal{T}(\mathcal{P}) = s_1 \mathcal{P} + s_2 \mathcal{P}^2$
- Up to seven multipoles $1 < l < 7$
- s_1 , s_2 so that solutions exist
- Estimate error through discretisation

Figure 19: Discretisation error