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Laboratory plasmas and Applications

e Gas discharges (geseous electronics)
@ Solid state plasmas (free electrons and holes in semiconductors)
@ Plasma etching (surface cleansing)

@ Safe and sustainable food production (decontamination,
degradation of chemical residues of agricultural pesticides)

@ Medicine and healthcare (mental applications, interaction with
biological cells)

@ Thrusters (spacecraft propulsion)
@ Plasma accelerators (free-electron lasers, glass lasers)

@ Controlled thermonuclear fusion



Astrophysical and Space plasmas

Stars’ cores and atmospheres
Solar wind
Interstellar plasmas

Planets’ magnetospheres
Auroras

Neutron stars’ magnetosperes

o

o

o

o

@ lonospheric plasma
o

o

@ Accretion disks

°

Galactic plasmas
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Plasma Physics

e Equilibrium
e Stability

@ Dynamics, transport processes and turbulence
(There is experimental and theoretical evidence of an interplay
between sheared zonal flows, Reynolds or residual stress,
symmetry breaking, turbulence and transport regulation.)

@ Plasma heating and current drive

@ Dynamo effect (creation of magnetic fields)
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Plasma models

@ Kinetic theory

Boltzmann equation for particle species j:

of  0f g vxB\ 0f [0f
ot TV o T BT ) v T e

lon-electron Coulomb collision frequency : ve; < Te 3/2
For KT > 1KeV = (0f;/0t)coi =0
of; of,  qj vx B\ O0f
VI : - E =1 =0
asov eq a+ 8r+mj<+ c)av
@ Hybrid kinetic-fluid models

@ Multi fluid models
e Magnetohydrodynamics (MHD)




@ MHD: Introduction

@ Thermonuclear Fusion

e Equilibrium and Relaxation
@ Linear stability

@ Summary
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Magnetohydrodynamics (non-relativistic)

Priest, 1982; Goedblood & Poedts, 2004; Freidberg, 2014

me/m; — 0 (massless electrons), v : ion fluid velocity, quasineutrality

. Dp — 9dp
| === : = 1
mass evolution bt = ot +V-(pv)=0 (1)
D
momentum evolution: pF‘; —jxB+VP—-pg=0 (2)
DP
energy evolution: D +yPV.-v=0 (3)
V-B=0 (4)
V x B = poj (5)
: , 0B :
Ohm's and Faraday's laws: T V x [v x B —nj] (6)

D
Dt = B +v -V : Lagrangian (convective) derivative
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Ideal versus resistive MHD

From (5) and (6) =

0B
= B °B 7
5 = VX (vX )+MV (7)
Magnetic Reynolds number:
VX (vxB)|  poval
Ry, = 5
(n/10)V?B U
B B
L= VB V ~ Vg = W . Alfvén velocity

@ Ideal MHD (R, > 1): The plasma elements “are frozen” into

the magnetic field lines.
@ Resistive MHD (R, < 1): As R,, gets lower values the motion of
the plasma elements gradually decouples from that of the

magnetic field lines.
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Resistive MHD

The induction equation (6) for R,, < 1 becomes a diffusion equation:

oB  n_,
— =—V“B 8
ot " (8)
Rough estimate of the solution of (8) [V°B ~ B/L?]:
0B n t
C__"1p_ B_8B _t
ot pol? - 0P < TR>

Tr = pol?/n: resistive skin time

@ Characteristic time for magnetic field penetration into a plasma
(or external conductor).

@ It can also be interpreted as the time for annihilation of the
magnetic field; as the field lines move through the plasma, the
induced currents cause Ohmic heating of the plasma.



|deal MHD

The induction equation (6) reduces to
0B
— =VX(vxB
5 (vxB)

(9)

@ Eq. (9) has the consequence of the magnetic lines “frozen” into

the plasma.
Ta = L/va= Alfvén transit time: characteristic time scale for the

ideal MHD effects.
R, = "% ~ 10° for sun and tokamak plasmas =

TA
two different time scales
o fast ideal-MHD time scale 74
@ slow resistive-MHD time scale 75
Since R, > 1 for a wide range of laboratory and astrophysical
plasmas, ideal MHD is appropriate for describing such plasmas.
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Ideal MHD scale independence

Reference quantities:

lo,Bo,po, Vo= vao=Bo/\/topo — to=1l/vo

Basic reference quantities: Iy, By, to

Dimensionless dependent variables: y
p=p/po,¥=v/vo,P=P/(Bj/10) B =B/By,&=(l/v5)g

Dimensionless ideal MHD not dependent on Iy, By, po (omitting tildes):

dp
hal . — 1
L4V (w)=0  (10)
p(%+v-Vv)—(VxB)xB+VP—pg:0 (11)
%—T—FV'VP-F’)/PV'V:O (12)
%—?—VX(VXB)ZO, V-B=0 (13)
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Scales of different plasmas

Basic reference quantities Lo (M) B, (T) to(s)
Tokamak 10 5 3x10°
Earth magnetosphere 4x107 3x10° 6
Solar coronal loop 108 3x1072 15
Neutron star magnetosphere 108 108 102
Accretion disk YSO 1.5x10° 10* 7x10°
Accretion disk AGN 4x10" 10* 2x10"
Galactic plasma 10% 10® 10"

The dimensionless ideal MHD equations do not depend on the
plasma size, ly, on the magnitude of the magnetic field, By, and on
the density, po, i.e. on the time scale, ty. This provides the basis for
the description of macroscopic dynamics of a large portion of matter
in the Universe and, hence, for effective cross-fertilization between
laboratory and astrophysical plasma physics.
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MHD region of validity

Underlying conditions: (1) high collisionality

(2) small ion gyro radius (3) small resistivity
Conditions (2) and (3) are well satisfied in high-temperature plasmas
but, in contrast, condition (1) is never satisfied:

lon-electron Coulomb collision frequency: ve; = "765277

electrical resistivity : 7 oc T, 3/?

Despite of that:

@ In a magnetized plasma the magnetic field can play the role of
collisions because of the particle gyro-motion (mean-free path ~
Larmor radius). For this reason MHD is particularly relevant to
the physics perpendicular to B.

@ However, several important phenomena, such as Landau
damping and those associated with energetic particles, require
more fundamental models.
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@ MHD: Introduction

@ Thermonuclear Fusion

e Equilibrium and Relaxation
@ Linear stability

@ Summary
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Thermonuclear Fusion

Fusion occurs in the center of stars, e.g. in the center of the Sun in a
fully ionized hydrogen plasma.

Sun: 41H —3 He +2e" +2u.+ Q
4-10° kgr/sec = 4 x 10%® Watt
Laboratory: D + T — (3H. + 3.5 Mev) + (n + 14.1 Mev)

Lawson condition [Wesson, 2004]: To produce more energy by fusion
reactions than that required to heat the plasma and compensate the
radiation losses:

nte T > 10" m3secKeV, Tim T,=T ~10KeV, np ~ nt = n/2

Tg : energy confinement time (energy transport o< (3/2)nT /7¢)

e Magnetic confinement: n =~ 102! m=3, 7 ~ 0.1 sec

@ Inertial confinement: n~ 103 m=3, 72 ~ 10~ sec



The first experiments (pinches)
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Schematic diagrams of z-pinch (left) and #-pinch (right) devices
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Toroidal equilibrium requirements

©@ Any MHD equilibrium must be supported by externally supplied
currents; it is not possible to create a configuration confined
solely by the currents flowing within the plasma itself
(consequence of the Virial theorem [Shafranov, 1966; Freidberg,
2014)).

| MAJOR AXIS

POLOIDAL
DIRECTION

'

~a

Z\'
MINOR AXIS
! TOROIDAL
DIRECTION

Toroidal geometry

© A toroidal equilibrium can not be established by a purely
toroidal magnetic field; to confine the plasma a poloidal
component B, is necessary.
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In a tokamak, the toroidal field component B; is produced by external
coils, while the poloidal component B, is produced by a large toroidal
plasma current induced by a transformer.
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Stellarator

In a stelarator, the helical magnetic field is entirely produced by
currents of external coils.



The European Fusion Program

EUROfusion
consortium members*

@ Spherical Tokamak
® Stellarator

@ Linear Device

@ ITER (under construction)
+The yellwcots e e hesdquarers

Winen signed he G Agreoment.
(Tmber 833053, EUROusion)

in 7X (IPP)

@ Pilot-PSI/Magnum-PS! (DIFFER)
©Psi2 (F2)

o
JET (European Commission)

MAST Upgrade (CCFE)
oereinleg ASDEX Upgrade (IPP)

BTCV (5PC)

‘e
WEST (CEA)
ITER
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The National Program

for Controlled Thermonuclear Fusion

National Centre For Scientific Research Demokritos
National Technical University of Athens

Foundation for Research and Technology - Hellas
The University of loannina

National and Kapodistrian University of Athens
University of Thessaly

Aristotle University of Thessaloniki

Technical University of Crete

Hellenic Mediterranean University

® 6 6 6 6 6 6 o o o

University of Patras
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The Joint European Torus (1)

Cutaway diagram of the JET torus (with man for scale)
Geometric and operational figures
Ry=29m a=125m b=210m

Bt - 345 T, BP ~ ].OilBt, lt - 32 S 48 MA



The Joint European Torus (2)

The JET machine during the 1985 construction phase



The Joint European Torus (3)

Taken in 1996, this is a wide angle view inside the torus showing a
man wearing protective clothing performing maintenance within the
vessel.

23 /74



The Joint European Torus (4)
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A split image of the inside of the torus, showing the plasma.)

Results: nTe T =~ 0.65 x 102 m~3 sec Kev

Lawson condition: ntg T > 10%* m™3 sec Kev
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Results of D-T discharges at JET

@ 1997: Fusion Gain record at a pulse of 3 sec
[Thomas et al, PRL (1998)]:

Fusion energy

Fusion Gain Q = = 0.65

Absorbed energy
Fusion energy produced: Ef=30.15 MJ

@ 2021: Fusion Energy record at a pulse of 5 sec:
Ef=59 MJ
Q=0.33
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https://www.youtube.com/watch?v=kTLtmiCELL8

The next step: ITER

International Thermonuclear Exgerimental Reactor



The ITER project

Partners: European Union (with Switzerland), Japan, Russia,
China, USA, India, South Korea

Goal: Feasibility of controlled fusion for electric power
production

Site: Cadarache, France
Budget: 25 x 10° Euros

Fusion power: 400 MW

Output power

I—_10
nput power

© 000 O©0 O
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The site of under construction ITER
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ITER: The under construction plasma chamber
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@ MHD: Introduction

@ Thermonuclear Fusion

@ Equilibrium and Relaxation
@ Linear stability

@ Summary
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|deal MHD equilibrium equations

V-(pv) =0 (14)

p(v-VIv—jx B+ VP —pg=0 (15)
V-B=0 (16)

VxB=j (17)

VXxE=0 = E=-Vo (18)
Vo tuxB=0 (19)

In addition, an “equation of state” usually in connection with either
isentropic processes or isothrmal processes or incompressibility.

Equilibrium with linear velocity: (v- V)v =0
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Equilibrium characteristics

(v-Viv=g=0, jxB=VP (20)

B-VP=0,j-VP=0
Diamagnetic current:

o BxVP T:CQHSt. TB x Vn
=" = - B2

The magnetic surfaces, which B lies on, the currents surfaces and the
isobaric surfaces (P =const.) are common.
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Existence of nested, toroidal magnetic surfaces

@ A set of such well defined surfaces is guaranteed in 2D systems
(translationally symmetric, axisymmetric as the tokamak, and
helically symmetric).

@ It is questionable in generic 3D geometry because of the
magnetic field braiding [Grad, 1967; Stix, 1973].

@ For this reason, plasma confinement in stellarators requires
certain kind of quasisymmetry, e.g. 2D dependence of the
magnetic field modulus in certain system of coordinates
[Helander, 2014].
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Grad-Shafranov equation

Cylindrical coordinates (z, R, ¢)
Axisymmetry: YA 0A/0¢ =0

Linear velocity, g =0

2
A*Y(R, z)+1ﬂ+R2dP 0, A*=

o 10 0
2dp " du oR2 “ROR "oz Y

@ The poloidal magnetic flux-function function ¥(R, z) labels the
magnetic surfaces.

@ The pressure P(1)) and the poloidal current /(v)) are free
functions.
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Solovév solution

Linearizing ansatz: P'(¢) = —|P’| = const. =
P=P,— Py, & =0, ¢,=0,

The subscripts a and b indicate values on the magnetic axis and the
plasma surface (boundary), respectively.
At the surface: P, = P, — |P'|tmax = 0

1 P’

///: 7(/2)/:€ | “

2 (1+ 02)
e =0: vacuum toroidal field, By = I/R, Iy = const.
e > 0: diamagnetic plasma
€ < 0: paramagnetic plasma

Solution: 1 = [(*(&* —¢) + (12@2 -1y m

C:Z/Rav §= R/Rav (/0 ar Ra)

(22)



Diamagnetic Solovév equilibrium (¢ > 0)

5
R e S [0 S AT

B

M

’ j . 517 /\fz’? 3

i

@ The configuration spontaneously exhibits an up-down symmetric
separatrix containing a couple of X-points located at:

(€= Ve, ¢ =£(5/V2)VI—e).

@ For € > 0 the solution describes a tokamak equilibrium widely
employed in the literature.

@ For € = 0 the inner part of the separatrix touches the axis of
symmetry and the equilibrium describes a spheromak.
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Paramagnetic Solovév equilibrium (e < 0)

[Arapoglou et al., 2013]

R(m)-

For e < 0 the separatrix touches the axis of symmetry at a single
X-point located at (R =0,z = 0).

37/74



Numerical solutions of the GS equation

a)

Solution for JET [Albanese et al., 1986] (left)
Comparison of a diamagnetic Solovév equilibrium with an
(indistinguishable) numerical solution [Zakharov and Pletzer, 1999] (right).

Codes: PROTEUS, HELENA, extentions of HELENA to include
plasma flow and pressure anisotropy [Poulipoulis et al., 2016; 2021].



Modeling Sun’s corona employing

the paramagnetic Solovév equilibrium

“Modelling solar coronal magnetic fields with physics-informed
neural networks” [Baty & Vigon, 2024]

PINNs solution

Equilibrium magnetic field lines (iso-contours of 1) obtained with PINNs
solver for the Solovév drop-shaped (paramagnetic) equilibrium [From Baty
& Vigon].



Modeling CME employing

the paramagnetic Solovév equilibrium

“Toroidal Miller-Turner and Solovév coronal mass ejection models in
EUHFORIA" [Linan et al., 2024]

a Soloviev, ng=1x 10" kg m~3
5.0, 2015-11-06 14:03

0 2.0 w90
30
15 15
— 2
10 MR S 1.0 B b
5 5 o 20 £
2 o0s 2 os g g
2 oo 2 o0 @ o 15
T £ 3 2
Z_os Z_os 2 3
> N S 1032
-1.0 ) -10 s L5
-15 -15
a o
205 -1 0 i —2.0 i 2 B 0° 0
x [HEEQ AU] Distance [AU] Latitude [Degree]
Mercuy @~ Eath -m- STA -m- STB T 21 17T CoER e IMF polarity
o Venus e Mars =

Distribution of scaled mass density at the moment of arrival at Earth as a
function of the initial CME density, ng, simulated with the (paramagnetic)
Solovév CME model [from Linan et al.].
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Force-free equilibrium states

j=VxB=0= B=VYorj||B (jxB=0), —-VP+pg=0
In many cases in the astrophysical and laboratory plasmas flow very
large currents. Then, the respective magnetic forces would be too
strong to be balanced by pressure-gradient, gravitational and inertial
forces. Therefore, the current density tents to be parallel to the
magnetic field.

VxB=A\B (23)

@ Linear force-free states (LFF): A\ = constant
Then: V?B = AB, V?: Laplace operator (24)

@ Non-linear force-free states (NLFF): A = A(x)

In Sun’s chromosphere and corona LFF fields is a satisfactory
approximation while in the photosphere NLFF ones are preferable
[Wiegelmann & Sakurai, 2021].
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Magnetic helicity

Magnetic helicity H =[A-Bdv

o, .
N\ B=VxA
S,
(DZ
&i H,=[A-dr [B-ds
I S,

\

H=220 0, :J:VXA-dS:®: =0,

@ The magnetic helicity, H, is a topological measure of the
linkage, twist, and writhe of a magnetic field.

@ If one closed field line initially links another n times then in a
perfectly conducting plasma the two loops must remain linked n
times during any subsequent plasma motion; that is, in the
framework of ideal MHD the magnetic helicity is locally
conserved [Woltjer, 1958].
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Woltjer-Taylor relaxation

@ Taylor's conjecture: In the presence of resistivity, however small,
breaking the local conservation of magnetic helicity, the global
(throughout the plasma volume) magnetic helicity remains
invariant [Taylor, 1974].

@ Minimization of the magnetic energy under the single constraint
of global magnetic helicity, produces LFF states.

@ For axisymmetric systems those states satisfy the following form
of the Grad-Shafranov equation:

A+ 2\ =0 (25)
@ The respective equation for translationally symmetric systems is

V%) 4+ M%) =0, V?: 2D Laplace operator (26)
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Reversed-field-pinch relaxed states

For a circular-cross-section “torus” of large-aspect ratio we may take
the cylindrical limit in which the 1D LFF well-known “Bessel
function” solution is

B, =0, By=aJi(Ar), B,=ady(Ar), «: minor radius

0.1
g _¥——%
=47~ 1 Bo
X AN \\
O
N ™
s

Experimental and theoretical magnetic field profiles, HBTX-1A machine,
Culham [from Bodin, 1984].
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Spheromak relaxed states

Eigenvalue problem: A*i; +A?1); = 0, 1); = 0 on the boundary (27)

Axisymmetric solution for an orthogonal cross section of height h and
radius « [Bondeson et al., 1981; Finn et al., 1981]:

1/2
3.83)\7 2 h
Lowest eigenvalue : \ = [(—) + (f) ] , — <167 (28)
o h o

Br = —BokJ1(IR) cos(kz)
B, = BokJo(IR) sin(kz)
By = BoAi(IR) sin(kz) (29)

kh =m, la =3.83, (R, ¢, z) cylindrical coordinates
For h/a > 1.67 the relaxed state becomes nonaxisymmetric.
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Comparison with the BETA |l spheromak, LLNL

L e A S S A
o8f ‘@B W
E 04 Dc/ R —
£ oM
2 0 /D =
2 Q/D N
I ) S il N N NN SR SR MR D=1
z
g 87 T T T T T T T 1
£ o4l PB o i
5
= 0 “ =
a
-04+ \ _/ —
nO@o
ogle—L 1 v T 1
_40 ~20 0 20 40
y (em)

Experimental and theoretical (solution (29)) profiles of the magnetic field
on the mid-plane z = 0 in the BETA Il spheromak at LLNL. (a) poloidal
field B;; (b) toroidal field By [from Turner et al., 1983].
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Constructing 3D Sun LFF fields

82 62 82
2p _ 2
VB = )AB, \A=const,, V° = e + 57 + e

Cartesian coordinates (x, y, z) with z corresponding to the height
from the Sun surface.

Methods of construction
@ Green functions [Chiu & Hilton, 1977]
@ Separation of variables [Seehafer, 1978]
e Fourier transforms [Alissandrakis, 1981]
A in general is approximated by observations.
These methods can also be used to compute a potential field (A = 0).
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Construction of Sun's upper atmosphere

3D LFF fields by Fourier transforms

Bz-dYM

°

2/d

The vertical component, B,, of a force-free field as a function of height.
The computation was performed using as boundary condition the z
component of a dipole field placed vertically at height d below the
boundary, with A\d = 2. Three curves for different values of the parameter
C are presented, parameter relating to the vertical derivative of B, at the
boundary [from Alissandrakis, 1981].
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An axisymmetric NLFF equilibrium (1)

[Low & Lou, 1990]

dl
* () = = 30
AU A() =0, A= T (30)
Spherical coordinates (r,0,¢), 1 =(r,0)
Then, Eq. (30) becomes
Py 1—p 32¢ _
572 —|— p I(w) =0, u=cosb (31)
There exist separable solutlons of the forms:
P
y =2 (32)
r
I(¢) = ay™H/n (33)

where o and n are parameters.



An axisymmetric NLFF equilibrium (2)

[Low & Lou, 1990]

The function P(u) satisfies the nonlinear ODE

2p 1
(1 —,uz)d——f—n(n—l—l)PnLozz%Pl”/” =0. (34)

du?
To avoid a singularity of By and B, at the origin:
'D|M:i1 =0 (35)

@ The boundary value problem posed by (34) and (35) should be
solved numerically to generate the seeked NLFF fields.

@ The resulting configurations are very popular for testing
numerical algorithms for a 3D NLFFF modeling [e.g.
Aschwanden & Malanushenko, 2013].
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Low & Lou NLFF configuration

20090
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BOO
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—B09g
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—2009

] 10 20 30 40 50 60

The 2D equilibrium in spherical coordinates shown is invariant in ¢. The
colour-coding corresponds to the vertical magnetic field strength in Gauss
in the photosphere and a number of arbitrary selected magnetic field lines
are shown in yellow. The distances on the axes are in pixel of the
computational grid.
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@ MHD: Introduction

@ Thermonuclear Fusion

e Equilibrium and Relaxation
@ Linear stability

@ Summary
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Mechanical analogy of various types of equilibrium

s~ = /\

NO EQUILIBRIUM NEUTRALLY STABLE (METASTABLE)

EQUILIBRIUM
% M
D E
STABLE EQUILIBRIUM UNSTABLE EQUILIBRIUM

F G
EQUILIBRIUM WITH LINEAR EQUILIBRIUM WITH
STABILITY AND NONLINEAR LINEAR INSTABILITY

INSTABILITY AND NONLINEAR
STABILITY
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The hydrodynamic Rayleigh-Taylor instability

If a heavy liquid is on top of a lighter one, it would tend to go down
to the state “light on top”. The potential energy in the first state is
higher than in the end state.

Indeed, consider two thin layers of different mass densities and
compute the potential energy:

State 1: W; = plghl + ngh2
State 2 : sz = nghl + plgh2
W, = W, — W3 = g(p1 — p2)(h — h2)

If hy > hy and p; > p, it follows §W > 0 and the system is unstable.
The second state “light on top” has a lower potential energy.
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Linear (exponential) stability

All the quantities of interest are linearized about their equilibrium
values

g(rv t) = go(r) + gl(r, t)
go(r): equilibrium
g1(r, t): first-order perturbation (|g;/go| < 1)
General form of g :

gi(r, t) = g(r)e" ™"

w = Rw + iI[w

If Sw < 0 — damping — stability
Sw > 0 — growth — instability

In case of instability: growth rate = |Sw|
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Linearized ideal MHD equations (1)

Static equilibrium:

joXBo = VPo+poV¢, (g = —Vq))
onVXBO
V-By=0

Vo = 0
Linearized equations:

poatvl = —VP]_ + (VXBl)XBO

+(VXBo)XBl — p1V<D (36)
at81:VX(V1XBo), V-B;=0 (37)
BtPl = —V 'VPO—’}/P()V'Vl (38)
depr = =V - (pov1) (39)



Linearized ideal MHD equations (2)

Displacement vector:

Initial data (convenient):

Né(rvo) = él(r?o) = ﬁl(r70) = ﬁl(ho) =0
85((;; 0) = () £0 (41)

Integration of (37)-(39) gives By, Py, f; in terms of &:

B, = V x(£xBy) (42)
Pr=—&-VPy— PV - £ (43)
p1=—V - (pof) (44)



Linearized ideal MHD equations (3)

Inserting the expressions for I§1, ,E’l, p1 into the momentum equation
(36) yields

—— = F(& 45
Pog (€) (45)
Force operator:
F(é) = (VXél)XBo + (VXBo)Xél
FV(E - VP + 7PV - &)+ (VO)V - (pog) (46)
Equation (45) gives the time evolution of a perturbation applied at

t = 0 with initial values &(r,0) = 0, D€/t = ¥y (r, t) and
appropriate boundary conditions.

(Henceforth the subscript 0 is dropped from the equilibrium
quantities.)



Normal-mode formulation

Instead of solving the initial value problem it is more practical to
consider the equivalent problem of determining the normal modes of
the system. On account of linearity of the momentum equation (45)
and stationarity of the equilibrium quantities we assume

E(r,t) = €(r)e 0.

Eq. (45) then leads to the normal-mode formulation of the stability
problem:

—w?p€ = F(§) (47)
F(¢) = (VxB;)xB+ (VxB)xB;
FV(E VPPV -£) + (VO)V - (4€)
In this approach only appropriate boundary conditions for & are
required. Eq. (47) can then be solved as an eigenvalue problem for

the eigenvalues w? and the eigenfunctions &,.



Simplest boundary condition (internal modes)

perfectly
_conducting
[ wall

plasma

The plasma extends out to a stationary, smooth, perfectly conducting
wall, S,, on which

n-§ls =0.
This guarantees that

n-Bilg =n-vfg =0
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Properties of the force-operator F

@ F is symmetric (self adjoint):

[ n-F@rae= [ & Fmar.

where & and m) two arbitrary displacement vectors satisfying the
boundary conditions.

@ Consequently, for any discrete normal mode the corresponding
eigenvalue w? is real.

@ Any two nondegenerate discrete normal modes are orthogonal:

[ rn-e=0.

The modes are orthogonal with weight function p.
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The energy principle

Multiplying the equation of motion pd2€/9t? = F(£) by % and
making use of the symmetry of F yields that the perturbed energy is

conserved:
> at[/sd——/e (&) ] (48)

Perturbed potential energy: [§W(€, &) = —1 f% - F(&)dr

Kinetic energy: K(£,€) =1 fpf
Using £(r, t) = &(r)e"(“?), (48) becomes

W(E. &) = —*K(£, ). (49)
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Necessary and sufficient condition for stability

Statement (a): If for all allowable & (i.e. & bounded in energy and
satisfying appropriate boundary conditions)

sW(g,£) >0 (50)

the system is stable.
Statement (b): If for any allowable &

oW(g, &) <0 (51)

the system is exponentially unstable.

If there is an allowable trial function able to make dW < 0 the
system may decrease its potential energy following this path; that is
the existence of such a function making 0W < 0 is sufficient for
instability.
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Different forms of the energy integral

1 .
(1) oW = 5/ dr {|By? + 7P|V - € — € -jxB,
Vp

+(&L - VP)V &1 = V- (p€)(& - VO)} (52)
The subscript L, || refer to the equilibrium field B.

A general complex function & has been admitted in connection with
possible complex Fourier representation.

1 Alfvén fast magnetoacoustic
2
(2): oW :E/dr By, |* + ‘B1||_(£l'VP)b/B|

acoustic kink
+yP|V - £ — ji (€1 xb) - B,
flute ravitational
—2(§, - VP)(k-&1) — V- (p€)(§"-VP) > (53)
b=B/B, jyj=j-b, B—carvature:k =b-Vb (k-b=0)



The intuitive form of 0 W

@ The first three terms in (53) are stabilizing while the three last
ones as indefinite in sigh may be destabilizing.

@ The acoustic term indicates that the most unstable perturbations
(in the context of minimizing 6 W) are incompressible:

V-£=0 (54)

Since the parallel displacement £ enters only in this term, one
can minimize 6 W by choosing & such that (54) is satisfied:

50 (8)- ve
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Pressure driven modes (flutes)

Possible destabilizing term:
- [are vPs-£D)

If K- VP >0 (k| &), ieif the curvature vector has a component
along the pressure gradient, the mode is unstable.

3 P
P * P:O p P:O
plasma P

B

el

The flute mode could be visualized roughly by saying that the centrifugal
force plays the role of gravity and the stable situation is “light on top of
heavy”.
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Current driven modes (kinks)

Example [Tasso, 1979]: Force-free equilibrium
jXB=VP=Vd=j, =0, j—\B
Then (52) becomes

1 stabilizing  destabilizing
sw=3 [ B - € (ixBy)

It is possible to make |B1|? = |V x (&£ x B)|* small, then the second
term may overcome the first one. So, for stability one should try to
prevent |B;|? from becoming too small. It turns out that the
magnetic shear, s = (1/r)dq/dr, where q is the safety factor
measuring the pitch of the magnetic field lines, tends to increase B;
in magnitude (over the plasma radius).

While in general current-driven unstable modes are radially extended
depending on the current distribution, pressure driven modes are
rather sensitive to the damping effect of magnetic shear and hence

tend to be radially localized.



The kink instability

Destabilizing term: —[j|(&% xb) - By

WEAKER By

|
7 STRONGER Bg

In a cylindrical plasma with axial equilibrium current (z-pinch)
creating a purely azimuthal (poloidal) magnetic field, By, a kink-like
perturbation make the magnetic lines below closing together than
those above. The resulting magnetic-pressure-gradient force increase
the perturbation further.

The mode can be stabilized by applying an external magnetic field
parallel to the current



Laboratory demonstration of the kink instability

R=25cm
a=3cm

One of the earliest photos of the kink instability in action - the 3 by 25 cm
pyrex tube at Aldermaston
[https : //en.wikipedia.org /wiki | Kink_instability].
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Kink instability at the Sun

Kinky flux: ldeal-MHD numerical simulations of twisted magnetic
field lines on the solar surface show how the kink instability results in
solar flares [Fan, 2005; Torok & Kliem, 2005; Hanlon, 2005].

Images from the TRACE satellite showing the evolution of a filament
eruption on the solar surface are well matched by numerical simulations of
the magnetic field lines of a coronal loop [from To6rok & Kliem, 2005].
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Summary (1)

e Magnetohydrodynamics (MHD), in the framework of which the
plasma is treated as an electrically conducting fluid, can describe
a broad range of laboratory and astrophysical plasmas.

In particular, for high-temperature plasmas with negligible
electrical resistivity, the ideal-MHD equations remain scale
invariant in a huge range of spatial dimensions, densities and
magnetic fields; hight temperature plasmas are pertinent to the
controlled thermonuclear fusion, a successful outcome of which
would cover completely the globe's energy needs, and physical
phenomena in the star's atmospheres as the Sun coronal mass
ejections.

The symmetric (2D) ideal MHD equilibria are governed by the
Grad-Shafranov equation, a second-order, elliptic, quasilinear,
PDE for the poloidal magnetic flux-function.
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Summary (2)

@ The Solovév solution of the GS equation has been employed
extensively in tokamak studies; also, it is employed for modeling
Sun physical phenomena.

Of particular importance are force-free equilibria, having plasma
currents parallel to the magnetic field, to describing relaxed
states of the reversed-field pinch and spheromak and magnetic
field configurations in the Sun atmosphere.

The ideal-MHD linear stability is ruled by the Energy Principle,
involving the potential energy of the perturbations. Because of
the self-adjointness of the force-operator, this principle provides
necessary and sufficient conditions for stability.

Ideal MHD instabilities include pressure driven and current
driven modes, i.e. macroscopic instabilities, evolving in a fast
(Alfvénic) time scale. An example is the kink instability which
should be controlled in laboratory fusion plasmas and it plays a
role in the creation of Sun flares.
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