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Laboratory plasmas and Applications

Gas discharges (geseous electronics)

Solid state plasmas (free electrons and holes in semiconductors)

Plasma etching (surface cleansing)

Safe and sustainable food production (decontamination,
degradation of chemical residues of agricultural pesticides)

Medicine and healthcare (mental applications, interaction with
biological cells)

Thrusters (spacecraft propulsion)

Plasma accelerators (free-electron lasers, glass lasers)

Controlled thermonuclear fusion
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Astrophysical and Space plasmas

Stars’ cores and atmospheres

Solar wind

Interstellar plasmas

Planets’ magnetospheres

Ionospheric plasma

Auroras

Neutron stars’ magnetosperes

Accretion disks

Galactic plasmas
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Plasma Physics

Equilibrium

Stability

Dynamics, transport processes and turbulence
(There is experimental and theoretical evidence of an interplay
between sheared zonal flows, Reynolds or residual stress,
symmetry breaking, turbulence and transport regulation.)

Plasma heating and current drive

Dynamo effect (creation of magnetic fields)
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Plasma models

Kinetic theory

Boltzmann equation for particle species j :

∂fj
∂t

+ v · ∂fj
∂r

+
qj
mj

(
E+

v × B

c

)
· ∂fj
∂v

=

(
∂fj
∂t

)

col .

Ion-electron Coulomb collision frequency : νei ∝ T
−3/2
e

For KT ≥ 1KeV ⇒ (∂fj/∂t)col ≈ 0

Vlasov eq. :
∂fj
∂t

+ v · ∂fj
∂r

+
qj
mj

(
E+

v × B

c

)
· ∂fj
∂v

= 0

Hybrid kinetic-fluid models

Multi fluid models

Magnetohydrodynamics (MHD)
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Outline

MHD: Introduction

Thermonuclear Fusion

Equilibrium and Relaxation

Linear stability

Summary
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Magnetohydrodynamics (non-relativistic)

Priest, 1982; Goedblood & Poedts, 2004; Freidberg, 2014

me/mi → 0 (massless electrons), v : ion fluid velocity, quasineutrality

mass evolution:
Dρ

Dt
=
∂ρ

∂t
+∇ · (ρv) = 0 (1)

momentum evolution: ρ
Dv

Dt
− j× B+∇P − ρg = 0 (2)

energy evolution:
DP

Dt
+ γP∇ · v = 0 (3)

∇ · B = 0 (4)

∇× B = µ0j (5)

Ohm’s and Faraday’s laws:
∂B

∂t
= ∇× [v × B− ηj] (6)

D

Dt
≡ ∂

∂t
+ v · ∇ : Lagrangian (convective) derivative
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Ideal versus resistive MHD

From (5) and (6) ⇒
∂B

∂t
= ∇× (v×B) +

η

µ0
∇2B (7)

Magnetic Reynolds number:

Rm =

∣∣∣∣
∇× (v×B)

(η/µ0)∇2B

∣∣∣∣ ∼
µ0vAL

η

L =

∣∣∣∣
B

∇B

∣∣∣∣ , v ∼ vA =
B

(µ0ρ)1/2
: Alfvén velocity

Ideal MHD (Rm ≫ 1): The plasma elements “are frozen” into
the magnetic field lines.
Resistive MHD (Rm ≤ 1): As Rm gets lower values the motion of
the plasma elements gradually decouples from that of the
magnetic field lines.
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Resistive MHD

The induction equation (6) for Rm ≪ 1 becomes a diffusion equation:

∂B

∂t
=

η

µ0
∇2B (8)

Rough estimate of the solution of (8) [∇2B ≈ B/L2]:

∂B

∂t
=

η

µ0L2
B ⇒ B = B0 exp

(
− t

τR

)

τR ≡ µ0L
2/η: resistive skin time

Characteristic time for magnetic field penetration into a plasma
(or external conductor).

It can also be interpreted as the time for annihilation of the
magnetic field; as the field lines move through the plasma, the
induced currents cause Ohmic heating of the plasma.
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Ideal MHD

The induction equation (6) reduces to

∂B

∂t
= ∇× (v×B) (9)

Eq. (9) has the consequence of the magnetic lines “frozen” into
the plasma.

τA ≡ L/vA= Alfvén transit time: characteristic time scale for the
ideal MHD effects.

Rm =
τR
τA

≈ 106 for sun and tokamak plasmas ⇒

two different time scales

fast ideal-MHD time scale τA
slow resistive-MHD time scale τR

Since Rm ≫ 1 for a wide range of laboratory and astrophysical
plasmas, ideal MHD is appropriate for describing such plasmas.
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Ideal MHD scale independence

Reference quantities:
l0 ,B0 , ρ0 , v0 = vA,0 = B0/

√
µ0ρ0 → t0 = l0/v0

Basic reference quantities: l0 ,B0 , t0
Dimensionless dependent variables:
ρ̃ = ρ/ρ0 , ṽ = v/v0 , P̃ = P/(B2

0/µ0) , B̃ = B/B0 , g̃ = (l0/v
2
0 )g

Dimensionless ideal MHD not dependent on l0 ,B0 , ρ0 (omitting tildes):

∂ρ

∂t
+∇ · (ρv) = 0 (10)

ρ

(
∂v

∂t
+ v · ∇v

)
− (∇× B)× B+∇P − ρg = 0 (11)

∂P

∂t
+ v · ∇P + γP∇ · v = 0 (12)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 (13)
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Scales of different plasmas

Basic reference quantities l0 (m) B0 (T) t0 (s) 

Tokamak 10 5 3 x 10-6 

Earth magnetosphere 4 x 107 3 x 10-5 6 

Solar coronal loop 108 3 x 10-2 15 

Neutron star magnetosphere 106 108 10-2 

Accretion disk YSO 1.5 x 109 10-4 7 x 105 

Accretion disk AGN 4 x 1018 10-4 2 x 1012 

Galactic plasma 1021 10-8 1015 

 

The dimensionless ideal MHD equations do not depend on the
plasma size, l0, on the magnitude of the magnetic field, B0, and on
the density, ρ0, i.e. on the time scale, t0. This provides the basis for
the description of macroscopic dynamics of a large portion of matter
in the Universe and, hence, for effective cross-fertilization between
laboratory and astrophysical plasma physics.
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MHD region of validity

Underlying conditions: (1) high collisionality

(2) small ion gyro radius (3) small resistivity
Conditions (2) and (3) are well satisfied in high-temperature plasmas
but, in contrast, condition (1) is never satisfied:

Ion-electron Coulomb collision frequency: νei =
ne2

me
η

electrical resistivity : η ∝ T−3/2
e

Despite of that:

In a magnetized plasma the magnetic field can play the role of
collisions because of the particle gyro-motion (mean-free path ≈
Larmor radius). For this reason MHD is particularly relevant to
the physics perpendicular to B.
However, several important phenomena, such as Landau
damping and those associated with energetic particles, require
more fundamental models.
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Thermonuclear Fusion

Fusion occurs in the center of stars, e.g. in the center of the Sun in a
fully ionized hydrogen plasma.

Sun: 411H −→4
2 He + 2e+ + 2νe + Q

4 · 109 kgr/sec =⇒ 4× 1026 Watt

Laboratory: D + T −→ (42He + 3.5 Mev) + (n + 14.1 Mev)

Lawson condition [Wesson, 2004]: To produce more energy by fusion
reactions than that required to heat the plasma and compensate the
radiation losses:

n τE T ≥ 1021 m−3 sec KeV , Ti ≈ Te = T ≈ 10 KeV , nD ≈ nT = n/2

τE : energy confinement time (energy transport ∝ (3/2)nT/τE )

Magnetic confinement : n ≈ 1021 m−3, τE ≈ 0.1 sec

Inertial confinement : n ≈ 1031 m−3, τE ≈ 10−11 sec
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The first experiments (pinches)

Equilibrium: j× B−∇P = 0

Schematic diagrams of z-pinch (left) and θ-pinch (right) devices
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Toroidal equilibrium requirements
1 Any MHD equilibrium must be supported by externally supplied

currents; it is not possible to create a configuration confined
solely by the currents flowing within the plasma itself
(consequence of the Virial theorem [Shafranov, 1966; Freidberg,
2014]).

Toroidal geometry
2 A toroidal equilibrium can not be established by a purely

toroidal magnetic field; to confine the plasma a poloidal
component Bp is necessary.
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Tokamak

In a tokamak, the toroidal field component Bt is produced by external
coils, while the poloidal component Bp is produced by a large toroidal
plasma current induced by a transformer.
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Stellarator

In a stelarator, the helical magnetic field is entirely produced by
currents of external coils.
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The European Fusion Program
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The National Program

for Controlled Thermonuclear Fusion

National Centre For Scientific Research Demokritos

National Technical University of Athens

Foundation for Research and Technology - Hellas

The University of Ioannina

National and Kapodistrian University of Athens

University of Thessaly

Aristotle University of Thessaloniki

Technical University of Crete

Hellenic Mediterranean University

University of Patras
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The Joint European Torus (1)

Cutaway diagram of the JET torus (with man for scale)

Geometric and operational figures

R0 = 2.96 m, a = 1.25 m, b = 2.10 m

Bt = 3.45 T , Bp ≈ 10−1Bt , It = 3.2− 4.8 MA
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The Joint European Torus (2)

The JET machine during the 1985 construction phase
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The Joint European Torus (3)

Taken in 1996, this is a wide angle view inside the torus showing a
man wearing protective clothing performing maintenance within the
vessel.
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The Joint European Torus (4)

A split image of the inside of the torus, showing the plasma.)

Results: nτET ≈ 0.65× 1021 m−3 sec Kev

Lawson condition: nτET ≥ 1021 m−3 sec Kev
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Results of D-T discharges at JET

1997: Fusion Gain record at a pulse of 3 sec
[Thomas et al, PRL (1998)]:

Fusion Gain Q =
Fusion energy

Absorbed energy
= 0.65

Fusion energy produced: Ef=30.15 MJ

2021: Fusion Energy record at a pulse of 5 sec:

Ef=59 MJ

Q=0.33
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The next step: ITER

International Thermonuclear Experimental Reactor
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The ITER project

1 Partners: European Union (with Switzerland), Japan, Russia,
China, USA, India, South Korea

2 Goal: Feasibility of controlled fusion for electric power
production

3 Site: Cadarache, France

4 Budget: 25 × 109 Euros

5 Fusion power: 400 MW

6
Output power
Input power =10
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The site of under construction ITER
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ITER: The under construction plasma chamber
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Ideal MHD equilibrium equations

∇ · (ρv) = 0 (14)

ρ(v · ∇)v−j× B+∇P − ρg = 0 (15)

∇ · B = 0 (16)

∇× B = j (17)

∇× E = 0 ⇒ E = −∇Φ (18)

−∇Φ + v × B = 0 (19)

In addition, an “equation of state” usually in connection with either
isentropic processes or isothrmal processes or incompressibility.

Equilibrium with linear velocity: (v · ∇)v = 0
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Equilibrium characteristics

(v · ∇)v = g = 0 , j× B = ∇P (20)

B · ∇P = 0 , j · ∇P = 0

Diamagnetic current:

j⊥ =
B×∇P

B2

T=const.
= T

B×∇n

B2

The magnetic surfaces, which B lies on, the currents surfaces and the

isobaric surfaces (P =const.) are common.
32 / 74



Existence of nested, toroidal magnetic surfaces

A set of such well defined surfaces is guaranteed in 2D systems
(translationally symmetric, axisymmetric as the tokamak, and
helically symmetric).

It is questionable in generic 3D geometry because of the
magnetic field braiding [Grad, 1967; Stix, 1973].

For this reason, plasma confinement in stellarators requires
certain kind of quasisymmetry, e.g. 2D dependence of the
magnetic field modulus in certain system of coordinates
[Helander, 2014].
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Grad-Shafranov equation

Cylindrical coordinates (z ,R , ϕ)

Axisymmetry: ∀A ∂A/∂ϕ = 0

Linear velocity, g = 0

∆⋆ψ(R , z) +
1

2

dI 2

dψ
+ R2 dP

dψ
= 0 , ∆⋆ ≡ ∂

∂R2
− 1

R

∂

∂R
+

∂

∂z2
(21)

The poloidal magnetic flux-function function ψ(R , z) labels the
magnetic surfaces.

The pressure P(ψ) and the poloidal current I (ψ) are free
functions.
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Solovév solution

Linearizing ansatz: P ′(ψ) = −|P ′| = const. ⇒
P = Pa − |P ′|ψ, ψ ≥ 0, ψa = 0,

The subscripts a and b indicate values on the magnetic axis and the
plasma surface (boundary), respectively.
At the surface: Pb = Pa − |P ′|ψmax = 0

II ′ =
1

2
(I 2)′ = ϵ

|P ′|
(1 + δ2)

ϵ = 0: vacuum toroidal field, Bϕ = I0/R , I0 = const.
ϵ > 0: diamagnetic plasma
ϵ < 0: paramagnetic plasma

Solution: ψ =

[
ζ2(ξ2 − ϵ) +

δ2

4
(ξ2 − 1)2

]
R4
a |P ′|

2(1 + δ2)
(22)

ζ = z/Ra, ξ = R/Ra, (l0 = Ra)
35 / 74



Diamagnetic Solovév equilibrium (ϵ ≥ 0)

The configuration spontaneously exhibits an up-down symmetric
separatrix containing a couple of X-points located at:

(ξ =
√
ϵ, ζ = ±(δ/

√
2)
√
1− ϵ).

For ϵ > 0 the solution describes a tokamak equilibrium widely
employed in the literature.

For ϵ = 0 the inner part of the separatrix touches the axis of
symmetry and the equilibrium describes a spheromak.
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Paramagnetic Solovév equilibrium (ϵ < 0)

[Arapoglou et al., 2013]

R0Ru

zu

RHmL

zHmL

0 2 4 6 8 10 12

-10

-5

0

5

10

For ϵ < 0 the separatrix touches the axis of symmetry at a single
X-point located at (R = 0, z = 0).
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Numerical solutions of the GS equation

2.26 Numerical solutions

Solution for JET [ Albanese et al., 1986]

A comparison of a small aspect ratio Solovév equilibrium

with an (indistinguishable) numerical solution [Zakharov

and Pletzer, 1999]

45

2.26 Numerical solutions

Solution for JET [ Albanese et al., 1986]

A comparison of a small aspect ratio Solovév equilibrium

with an (indistinguishable) numerical solution [Zakharov

and Pletzer, 1999]

Codes: PROTEUS, HELENA

42

Solution for JET [Albanese et al., 1986] (left)

Comparison of a diamagnetic Solovév equilibrium with an

(indistinguishable) numerical solution [Zakharov and Pletzer, 1999] (right).

Codes: PROTEUS, HELENA, extentions of HELENA to include
plasma flow and pressure anisotropy [Poulipoulis et al., 2016; 2021].
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Modeling Sun’s corona employing

the paramagnetic Solovév equilibrium
“Modelling solar coronal magnetic fields with physics-informed
neural networks” [Baty & Vigon, 2024]

Modelling solar magnetic fields with PINNs 2579 

MNRAS 527, 2575–2584 (2024) 

Figure 5. (a) Absolute error distribution (iso-contours of the difference between the PINNs and exact solutions) for the arcade case shown in the previous 
figure. (b) Corresponding evolution of the total loss function with the training epochs. 

GS equation called Soloviev solutions can be also implemented as 
time dependent boundary conditions, leading to a more realistic and 
self-consistent CME evolution model and better predictions (Linan 
et al. 2023 ). 

Following the formulation deduced using ( R , z) cylindrical like 
variables in the plane perpendicular to the toroidal angle, the GS 

equation can be written as 

−
[

∂ 2 ψ 

∂R 

2 
+ 

∂ 2 ψ 

∂z 2 
− 1 

R 

∂ψ 

∂R 

]
= F ( R, z, ψ) (12) 

where F is a term containing the current density flowing in the 
toroidal direction (Deriaz et al. 2011 ). Assuming the particular form 

for F , F = αR 

2 + β (where α and β are constant), allows the 
obtention of Soloviev solutions (Soloviev 1975 ). More precisely, 
taking F = f 0 ( R 

2 + R 

2 
0 ) leads to the exact solution 

ψ = 

f 0 R 

2 
0 

2 

[
a 2 − z 2 − ( R 

2 − R 

2 
0 ) 

2 

4 R 

2 
0 

]
(13) 

in a spatial domain D bounded by its frontier ∂D defined as follows: 

∂D = 

[ 

R = R 0 

√ 

1 + 

2 a cos α

R 0 
, z = aR 0 sin α, α = [0 : 2 π ] 

] 

, 

(14) 

and having a Dirichlet-type boundary condition ψ = 0 (Deriaz et al. 
2011 ). The solution has a drop-shaped structure, that has an X - 
point at ( z = 0, R = 0) as ∂ψ 

∂z 
= 

∂ψ 

∂R 
= 0 at this point. Note, that 

similar Soloviev solutions can be also obtained using a different 
parametrization in order to approximate axisymmetric solutions of 
tokamak configuration having a D-shaped geometry, that are beyond 
the scope of this work. 

We present the results obtained with our PINNs solver in Figs 6 –7 
for finding the solution of equations (12 ) and ( 14 ). We have used the 
following solutions parameter values, f 0 = 1, a = 0.5, and R 0 = 1. The 
network architecture is similar to the arcade case where seven hidden 
layers with 20 neurons per layer were chosen, which consequently 
represent a number of 2601 trainable parameters for θ . We have used 
80 training data points (i.e. N data = 80) with a distribution based 
on a uniform α angle generator, and randomly distributed N c = 

870 collocation points inside the integration domain. The results 
are obtained after a training process with a maximum of 50 000 
epochs. The convergence of the loss function is initially very fast 
(typically during the first 10 000 epochs) and is much more slower 
after, as already observed previously for the arcade problem. When 
comparing to the exact solution, the relative error of PINNs solver 

Figure 6. Equilibrium magnetic field lines (iso-contours of ψ) obtained with 
PINNs solver for the Soloviev drop-shaped equilibrium. The spatial location 
of the training and collocation data sets are indicated using dots situated on 
the boundary and inside the domain, respectively. 

is similar (with a slightly higher value) compared to the arcade 
problem. Ho we ver, a smaller error is expected with a finer tuning 
of the different parameters and/or with a longer training procedure. 

4  STEADY-STATE  MAGNETIC  R E C O N N E C T I O N  

Magnetic reconnection plays a fundamental role for release of 
magnetic energy in solar flares and coronal mass ejections. The 
mechanism has been e xtensiv ely inv estigated o v er the last 50 years 
(Priest & Forbes 2000 ) including exact analytical solutions for 
steady-state reconnection (Sonnerup & Priest 1975 ; Craig & Henton 
1995 ) and numerical time dependent reconnection (Baty et al. 2014 ; 
Baty 2019 ) in the MHD framework approximation. In incompressible 
inviscid plasmas, the particular 2D exact solution obtained by 
Craig & Henton ( 1995 ) i.e the generalization of the previously 
introduced by Sonnerup & Priest ( 1975 ) is of particular interest in 
order to test our PINNs solver. 

4.1 Incompressible MHD equations 

We consider the following set of steady-state incompressible resis- 
tive MHD equations written in usual dimensionless units (i.e. the 
magnetic permeability and plasma density are taken to be unity). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/2575/7335305 by Ioannina U
niversity user on 18 N

ovem
ber 2023

Equilibrium magnetic field lines (iso-contours of ψ) obtained with PINNs

solver for the Solovév drop-shaped (paramagnetic) equilibrium [From Baty

& Vigon].
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Modeling CME employing

the paramagnetic Solovév equilibrium
“Toroidal Miller-Turner and Solovév coronal mass ejection models in
EUHFORIA” [Linan et al., 2024] Linan, L., et al.: A&A, 681, A103 (2024)

Fig. 13. Distribution of scaled mass density at the moment of arrival at Earth as a function of the initial CME density, n0, and the CME model
used. The right panels show simulations with the mMT CME model, while the left panels show simulations with the Soloviev CME model. Three
different initial mass densities were used, from top to bottom: n0 = 1 × 10−18 kg m−3 (panels a and b), n0 = 1 × 10−17 kg m−3 (panels c and d) and
n0 = 1 × 10−16 kg m−3 (panels e and f). The different legends related to the EUHFORIA vizualisation tool are described in Fig. 8.

Therefore, the size of the CME is limited as its maximum value,
a + R0 = 21.5 R⊙.

Figure 14 shows the time evolution profiles obtained in
EUHFORIA for CMEs with varying minor radii a. In these
instances, the major radius is fixed at R0 = 10 R⊙. Consequently,
by modifying the minor radius, we have also adjusted the initial
distance from the center of the torus to the center of the domain,
that is, td, according to Eq. (27).

As the minor radius increases, so does the spatial size of the
CME. Therefore, the larger a, the wider the profiles obtained in
Fig. 14 will be. On the other hand, increasing the minor radius
without altering the initial magnetic field B0 results in a rise in
magnetic flux. Therefore, the magnetic profiles for the case of
a = 9 R⊙ are comparable to those obtained when B0 = 3×10−6 T
in Sect. 4.4. As previously described, the amplitude of the var-
ious magnetic profiles and the speed of the CME increase with
the minor radius. However, the computation time also increases.
It goes from 23 minutes and 24 seconds for the reference mMT
CME with a = 5 R⊙ to 1 hour and 11 minutes for the mMT CME
with a = 9 R⊙. The simulation using a Soloviev model with
a = 9 R⊙ requires approximately three times the computation
time as the reference simulation with a = 5 R⊙.

All different CMEs shown in Fig. 14 have the same initial
density n0. As the minor radius increases, so does the volume of
the torus and, hence, the total mass of the CME injected across
the boundary. Therefore, the maximum of the obtained density
profile is higher for a = 9 R⊙ than for a = 3 R⊙, as described in
Sect. 4.5. However, it should be recalled that the density profile’s

amplitude depends on the impact position between the CME and
Earth.

Finally, altering the torus geometry, for example, by adjust-
ing the minor radius, changes the magnetic and thermody-
namic properties of the CME and thus the resulting profiles,
as described in previous sections. It is important to note that,
numerically, the solver (i.e., EUHFORIA) allows the use of a
minor radius close to the major radius, that is, R0/a ≈ 1. The-
oretically, the magnetic field is force-free only for large aspect
ratios (R0/a ≫ 1). Therefore, we can conclude that the force-free
assumption is not a limiting criterion and that it is not necessary
in EUHFORIA to restrict the range of minor and major radii to
satisfy R0/a ≫ 1.

5. Conclusion

In order to introduce new CME models in EUHFORIA to fill the
gaps in the models currently used, we implemented two mag-
netic configurations with a toroidal geometry. The first CME
model is derived from the modified Miller-Turner (mMT) model
(cf. Sect. 2.1). The second corresponds to the Soloviev equilib-
rium, an analytical solution to the Grad-Shafranov equation (cf.
Sect. 2.2). Although both models possess a toroidal geometry,
the Soloviev CME model offers more free parameters. Indeed,
unlike the mMT model, where the twist is fixed, it is possible
to modify the magnetic helicity of the Soloviev solution. On the
other hand, the mMT model has a circular cross section, while

A103, page 16 of 20

Distribution of scaled mass density at the moment of arrival at Earth as a

function of the initial CME density, n0, simulated with the (paramagnetic)

Solovév CME model [from Linan et al.].
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Force-free equilibrium states

j = ∇× B = 0 ⇒ B = ∇Y or j ∥ B (j× B = 0), −∇P + ρg = 0

In many cases in the astrophysical and laboratory plasmas flow very
large currents. Then, the respective magnetic forces would be too
strong to be balanced by pressure-gradient, gravitational and inertial
forces. Therefore, the current density tents to be parallel to the
magnetic field.

∇× B = λB (23)

Linear force-free states (LFF): λ = constant

Then : ∇2B = λB, ∇2 : Laplace operator (24)

Non-linear force-free states (NLFF): λ = λ(x)

In Sun’s chromosphere and corona LFF fields is a satisfactory
approximation while in the photosphere NLFF ones are preferable
[Wiegelmann & Sakurai, 2021].
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Magnetic helicity

The magnetic helicity, H , is a topological measure of the
linkage, twist, and writhe of a magnetic field.

If one closed field line initially links another n times then in a
perfectly conducting plasma the two loops must remain linked n
times during any subsequent plasma motion; that is, in the
framework of ideal MHD the magnetic helicity is locally
conserved [Woltjer, 1958].
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Woltjer-Taylor relaxation

Taylor’s conjecture: In the presence of resistivity, however small,
breaking the local conservation of magnetic helicity, the global
(throughout the plasma volume) magnetic helicity remains
invariant [Taylor, 1974].

Minimization of the magnetic energy under the single constraint
of global magnetic helicity, produces LFF states.

For axisymmetric systems those states satisfy the following form
of the Grad-Shafranov equation:

∆⋆ψ + λ2ψ = 0 (25)

The respective equation for translationally symmetric systems is

∇2ψ + λ2ψ = 0, ∇2 : 2D Laplace operator (26)
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Reversed-field-pinch relaxed states

For a circular-cross-section “torus” of large-aspect ratio we may take
the cylindrical limit in which the 1D LFF well-known “Bessel
function” solution is

Br = 0, Bθ = αJ1(λr), Bz = αJ0(λr) , α : minor radius

742 J. B. Taylor: Relaxation and magnetic reconnection

TABLE I. Toroidal pinch experiments. Representative parameters. Based on a table prepared by Ortolani and Rostagni (1983), with
additional data from Bodin and Newton (1980), Watt et al. (1985), and Toyama et al. (1985).

ZETA ALPHA ETA-BETA TPE-1R(M} ZT-40(M) OHTE HBTX-1A REPUTE

E (m)
a (m)
I (kA)
I(max)

T, (eV)
n (10 m )

1.50
0.50

350
900
200

1.60
0.50

300

0.65
0.125

180
280
40

2

0.5
0.09

130

300
0.3

1.14
0.20

190
440
150

0.25

1.24
0.19

230
500
75
0.4

0.8
0.26

200
500
50
0.2

0.82
0.20

220
260

0.5

The toroidal pinch is one of the simplest systems for
confining plasma by a magnetic field. In principle it in-
volves only a toroidal vacuum vessel in which a toroidal
magnetic field Bo is first created by external coils (Fig. 1).
Then, after creating an initial plasma by a suitable ioniz-
ing process, one induces a toroidal current I. This
current heats and compresses the plasma through the
well-known "pinch effect. " [The principal parameters of
several toroidal pinch experiments are shown in Table I.
For details see, for example, the review by Bodin and
Newton (1980).]

There are several remarkable features common to all
toroidal pinch experiments. First, it is found that, after
an initial highly turbulent phase, the plasma settles into a
more quiescent state in which the Auctuations are re-
duced. Second, in this quiescent state the mean magnetic
field profiles are essentially independent of the particular
experiment or the previous history of the discharge and
depend only on a single parameter, the pinch ratio0:—2I jaB&. Third, if 0 exceeds a certain critical value
the, quiescent state is one in which the toroidal field is
spontaneously reversed in the outer region of the plasma
near the vessel wall [hence, the usual designation—
reversed-field pinch (RFP)]. Typical mean magnetic field
profiles are shown in Fig. 2.

It is clear from the behavior of plasma in the toroidal
pinch that during the turbulent phase it seeks out a pre-
ferred configuration —the relaxed state. The idea of a re-

laxed state can be illustrated by a simple analogy. Sup-
pose a flexible, current-carrying, closed loop of wire is im-
mersed in a viscous medium; what configuration would it
adopt when it is in equilibrium with its own magnetic
field. So long as the wire is moving, energy is dissipated,
so it will come to rest in a state of minimum energy sub-
ject to whatever constraints are applicable. If the wire is
perfectly eondueting, the magnetic constraint is that (LI)
be constant (where L is the inductance), and if this were
the only constraint the equilibrium, or relaxed state,
would be found by minimizing LI /2 subject to this con-
straint. (This corresponds to a state of maximum induc-
tance. )

B. Plasma relaxation

A plasma resembles an infinity of interlinked flexible
conductors, and the problem is to identify the appropriate
constraints. If there were no constraints the state of
minimum energy would be a vacuum field with no plasma
current. This is indeed the eventual state of an isolated
resistive plasma, but is clearly not what we are concerned
with here. At the other extreme, if the plasma is perfectly
conducting, there is an infinity of constraints. These arise
because the fluid moves precisely with the magnetic field,
each field line maintains its identity, and the flux through
any closed curve moving with the fluid is constant.

To express these constraints mathematically (Taylor,
1974a) we introduce the vector potential B=V'XA. If
the plasma is perfectly conducting, so that E+vXB=O,
the vector potential must satisfy

0.1—

gs Y//y

X

Clearly any change in the component A perpendicular to
8 can be accommodated by a suitable choice of v, so Eq.
(1.1) imposes no constraint on changes of Az. However,
despite the arbitrary gauge X, there are constraints on 3 Il,
the component of A parallel to B. From Eq. (1.1) we
have

(1.2)

FIG. 2. Experimental and theoretical magnetic field profiles.
HBTX-1A (from Bodin, 1984).

dS BA

This is a magnetic differential equation (Kruskal and
Kulsrud, 1958) for g which can be satisfied only if

t

g
dl e)A

(1 3)8 Bt

Rev. Mod. Phys. , Vol. 58, No. 3, July 1986

Experimental and theoretical magnetic field profiles, HBTX-1A machine,

Culham [from Bodin, 1984].
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Spheromak relaxed states

Eigenvalue problem: ∆⋆ψi +λ
2
i ψi = 0, ψi = 0 on the boundary (27)

Axisymmetric solution for an orthogonal cross section of height h and
radius α [Bondeson et al., 1981; Finn et al., 1981]:

Lowest eigenvalue : λ =

[(
3.83

α

)2

+
(π
h

)2
]1/2

,
h

α
≤ 1.67 (28)

BR = −B0kJ1(lR) cos(kz)

Bz = B0kJ0(lR) sin(kz)

Bϕ = B0λJ1(lR) sin(kz) (29)

kh = π , lα = 3.83 , (R , ϕ, z) cylindrical coordinates
For h/a > 1.67 the relaxed state becomes nonaxisymmetric.
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Comparison with the BETA II spheromak, LLNL

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  195.130.115.88 On: Mon, 29 Aug

2016 10:06:27

Experimental and theoretical (solution (29)) profiles of the magnetic field

on the mid-plane z = 0 in the BETA II spheromak at LLNL. (a) poloidal

field Bz ; (b) toroidal field Bϕ [from Turner et al., 1983].
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Constructing 3D Sun LFF fields

∇2B = λB, λ = const., ∇2 =
∂2

∂x2
+

∂2

∂y 2
+

∂2

∂z2

Cartesian coordinates (x , y , z) with z corresponding to the height
from the Sun surface.

Methods of construction

Green functions [Chiu & Hilton, 1977]

Separation of variables [Seehafer, 1978]

Fourier transforms [Alissandrakis, 1981]

λ in general is approximated by observations.

These methods can also be used to compute a potential field (λ = 0).
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Construction of Sun’s upper atmosphere

3D LFF fields by Fourier transforms

1
9
8
1
A
&
A
.
.
.
1
0
0
.
.
1
9
7
A

The vertical component, Bz , of a force-free field as a function of height.

The computation was performed using as boundary condition the z

component of a dipole field placed vertically at height d below the

boundary, with λd = 2. Three curves for different values of the parameter

C are presented, parameter relating to the vertical derivative of Bz at the

boundary [from Alissandrakis, 1981].
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An axisymmetric NLFF equilibrium (1)

[Low & Lou, 1990]

∆⋆ψ + λI (ψ) = 0 , λ =
dI

dψ
(30)

Spherical coordinates (r , θ, ϕ) , ψ = ψ(r , θ)

Then, Eq. (30) becomes

∂2ψ

∂r 2
+

1− µ2

r 2
∂2ψ

∂µ2
+ I (ψ)

dI

dψ
= 0 , µ ≡ cos θ (31)

There exist separable solutions of the forms:

ψ =
P(µ)

rn
(32)

I (ψ) = αψ1+1/n (33)

where α and n are parameters.
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An axisymmetric NLFF equilibrium (2)

[Low & Lou, 1990]

The function P(µ) satisfies the nonlinear ODE

(1− µ2)
d2P

dµ2
+ n(n + 1)P + α21 + n

n
P1+2/n = 0. (34)

To avoid a singularity of Bθ and Bϕ at the origin:

P |µ=±1 = 0 (35)

The boundary value problem posed by (34) and (35) should be
solved numerically to generate the seeked NLFF fields.

The resulting configurations are very popular for testing
numerical algorithms for a 3D NLFFF modeling [e.g.
Aschwanden & Malanushenko, 2013].

50 / 74



Low & Lou NLFF configuration

and creates a circular potential magnetic field. This potential field becomes

disturbed by a toroidal ring current I with the minor radius a and the major radius R,
where a � R is assumed. Two opposite magnetic monopoles of strength q are

placed on the axis separated by distance L. These monopoles are responsible for the

Fig. 7 Construction of the
Titov–Démoulin equilibrium.
Image reproduced with
permission from Fig. 2 of Titov
and Démoulin (1999), copyright
by ESO

Fig. 6 Low and Lou’s (1990) analytic nonlinear force-free equilibrium. The original 2D equilibrium is
invariant in u, as shown in (a). Rotating the 2D-equilibrium and a transformation to Cartesian coordinates
make this symmetry less obvious (b–d), where the equilibrium has been rotated by an angle of u ¼ p

8
; p
4
,

and p
2
, respectively. The colour-coding corresponds to the vertical magnetic field strength in G (gauss) in

the photosphere (z ¼ 0 in the model) and a number of arbitrary selected magnetic field lines are shown in
yellow. The distances on the axes are in pixel of the computational grid

123
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The 2D equilibrium in spherical coordinates shown is invariant in ϕ. The

colour-coding corresponds to the vertical magnetic field strength in Gauss

in the photosphere and a number of arbitrary selected magnetic field lines

are shown in yellow. The distances on the axes are in pixel of the

computational grid.
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Mechanical analogy of various types of equilibrium
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The hydrodynamic Rayleigh-Taylor instability

If a heavy liquid is on top of a lighter one, it would tend to go down
to the state “light on top”. The potential energy in the first state is
higher than in the end state.

Indeed, consider two thin layers of different mass densities and
compute the potential energy:

State 1 : W 1
p = ρ1gh1 + ρ2gh2

State 2 : W 2
p = ρ2gh1 + ρ1gh2

δWp = W 1
p −W 2

p = g(ρ1 − ρ2)(h1 − h2)

If h1 > h2 and ρ1 > ρ2 it follows δW > 0 and the system is unstable.

The second state “light on top” has a lower potential energy.
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Linear (exponential) stability

All the quantities of interest are linearized about their equilibrium
values

g(r, t) = g0(r) + g̃1(r, t)

g0(r): equilibrium
g̃1(r, t): first-order perturbation (|g̃1/g0| ≪ 1)
General form of g̃1 :

g̃1(r, t) = g(r)e−i(ωt)

ω = ℜω + iℑω

If

{
ℑω < 0 → damping → stability
ℑω > 0 → growth → instability

In case of instability: growth rate = |ℑω|
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Linearized ideal MHD equations (1)

Static equilibrium:

j0×B0 = ∇P0 + ρ0∇Φ , (g = −∇Φ)

j0 = ∇×B0

∇ · B0 = 0

v0 = 0
Linearized equations:

ρ0∂tv1 = −∇P1 + (∇×B1)×B0

+(∇×B0)×B1 − ρ1∇Φ (36)

∂tB1 = ∇×(v1×B0) , ∇ · B1 = 0 (37)

∂tP1 = −v1 ·∇P0 − γP0∇ · v1 (38)

∂tρ1 = −∇ · (ρ0v1) (39)
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Linearized ideal MHD equations (2)

Displacement vector:

ṽ1 =
∂ξ̃

∂t
(40)

Initial data (convenient):

ξ̃(r, 0) = B̃1(r, 0) = ρ̃1(r, 0) = P̃1(r, 0) = 0

∂ξ̃(r, 0)

∂t
≡ ṽ1(r, t) ̸= 0 (41)

Integration of (37)-(39) gives B̃1, P̃1, ρ̃1 in terms of ξ̃:

B̃1 = ∇×(ξ̃×B0) (42)

P̃1 = −ξ̃ ·∇P0 − γP0∇ · ξ̃ (43)

ρ̃1 = −∇ · (ρ0ξ̃) (44)
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Linearized ideal MHD equations (3)

Inserting the expressions for B̃1, P̃1, ρ̃1 into the momentum equation
(36) yields

ρ0
∂2ξ̃

∂t2
= F(ξ̃) (45)

Force operator:

F(ξ̃) = (∇×B̃1)×B0 + (∇×B0)×B̃1

+∇(ξ̃ ·∇P0 + γP0∇ · ξ̃) + (∇Φ)∇ ·
(
ρ0ξ̃

)
(46)

Equation (45) gives the time evolution of a perturbation applied at
t = 0 with initial values ξ̃(r, 0) = 0, ∂ξ̃/∂t = ṽ1(r, t) and
appropriate boundary conditions.

(Henceforth the subscript 0 is dropped from the equilibrium
quantities.)
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Normal-mode formulation

Instead of solving the initial value problem it is more practical to
consider the equivalent problem of determining the normal modes of
the system. On account of linearity of the momentum equation (45)
and stationarity of the equilibrium quantities we assume

ξ̃(r, t) = ξ(r)e−i(ωt).

Eq. (45) then leads to the normal-mode formulation of the stability
problem:

−ω2ρξ = F(ξ) (47)

F(ξ) = (∇×B1)×B+ (∇×B)×B1

+∇(ξ ·∇P + γP∇ · ξ) + (∇Φ)∇ · (ρξ)
In this approach only appropriate boundary conditions for ξ are
required. Eq. (47) can then be solved as an eigenvalue problem for
the eigenvalues ω2

i and the eigenfunctions ξi .
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Simplest boundary condition (internal modes)

3.7 Boundary conditions

Internal modes

The plasma extends out to a stationary, perfectly con-

ducting wall on which

n · ξ|Sw = 0.

External modes

In addition to n · B̂1

∣∣∣∣∣Sw
= 0 on the wall, where the

hat indicates a vacuum quantity, appropriate jumping

conditions for P and B on the plasma vacuum interface

on which

n · ξ|Sp 6= 0

must be taken into account.

59

The plasma extends out to a stationary, smooth, perfectly conducting
wall, Sw on which

n · ξ|Sw = 0.

This guarantees that

n · B1|Sw = n · v1|Sw = 0
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Properties of the force-operator F

F is symmetric (self adjoint):

∫
η · F(ξ) dr =

∫
ξ · F(η) dr ,

where ξ and η two arbitrary displacement vectors satisfying the
boundary conditions.

Consequently, for any discrete normal mode the corresponding
eigenvalue ω2 is real.

Any two nondegenerate discrete normal modes are orthogonal:

∫
ρξm · ξn = 0 .

The modes are orthogonal with weight function ρ.
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The energy principle

Multiplying the equation of motion ρ∂2ξ̃/∂t2 = F(ξ̃) by ˙̃ξ and
making use of the symmetry of F yields that the perturbed energy is
conserved:

dH

dt
=

∂

∂t

[
1

2

∫
ρ ˙̃ξ2dr − 1

2

∫
ξ̃ · F(ξ̃)dr

]
= 0 . (48)

Perturbed potential energy: δW (ξ̃, ξ̃) ≡ −1
2

∫
ξ̃ · F(ξ̃)dr

Kinetic energy: K (ξ̇, ξ̇) = 1
2

∫
ρ ˙̃ξ2

Using ξ̃(r, t) = ξ(r)e−i(ωt), (48) becomes

δW (ξ, ξ) = −ω2K (ξ̇, ξ̇). (49)
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Necessary and sufficient condition for stability

Statement (a): If for all allowable ξ (i.e. ξ bounded in energy and
satisfying appropriate boundary conditions)

δW (ξ, ξ) ≥ 0 (50)

the system is stable.
Statement (b): If for any allowable ξ

δW (ξ, ξ) < 0 (51)

the system is exponentially unstable.

If there is an allowable trial function able to make δW < 0 the
system may decrease its potential energy following this path; that is
the existence of such a function making δW < 0 is sufficient for
instability.
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Different forms of the energy integral

(1): δW =
1

2

∫

Vp

dr
{
|B1|2 + γP |∇ · ξ|2 − ξ⋆ · j×B1

+(ξ⊥ ·∇P)∇ · ξ⋆⊥ −∇ · (ρξ)(ξ⋆ ·∇Φ)} (52)

The subscript ⊥, ∥ refer to the equilibrium field B.
A general complex function ξ has been admitted in connection with
possible complex Fourier representation.

(2): δW =
1

2

∫
dr




Alfvén
|B1⊥|2 +

fast magnetoacoustic∣∣B1∥ − (ξ⊥ ·∇P)b/B
∣∣2

+
acoustic
γP |∇ · ξ|2 −

kink
j∥(ξ

⋆
⊥×b) · B1

−
flute

2(ξ⊥ ·∇P)(κ · ξ⋆⊥) −
gravitational

∇ · (ρξ)(ξ⋆ ·∇Φ)

}
(53)

b = B/B , j∥ = j · b, B− carvature : κ = b ·∇b (κ · b = 0)
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The intuitive form of δW

The first three terms in (53) are stabilizing while the three last
ones as indefinite in sigh may be destabilizing.

The acoustic term indicates that the most unstable perturbations
(in the context of minimizing δW ) are incompressible:

∇ · ξ = 0 (54)

Since the parallel displacement ξ∥ enters only in this term, one
can minimize δW by choosing ξ∥ such that (54) is satisfied:

B ·∇
(
ξ∥
B

)
= −∇ · ξ⊥ .
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Pressure driven modes (flutes)

Possible destabilizing term:

−
∫

dr (ξ⊥ ·∇P)(κ · ξ⋆⊥)

If κ ·∇P > 0 (κ ∥ ξ⊥), i.e if the curvature vector has a component
along the pressure gradient, the mode is unstable.

3.15 Pressure driven modes (flutes)

Destabilizing term:

−
∫
dr (ξ⊥ ·∇P )(κ · ξ⋆⊥)

• If

κ ·∇P > 0 ,

i.e if the curvature vector has a component along

the pressure gradient, the mode is unstable.

The flute mode could be visualized roughly by saying

that the centrifugal force plays the role of gravity and

the stable situation is “light on top of heavy”.

While in general current-driven unstable modes are ra-

dially extended depending on the current distribution,

pressure driven modes are rather sensitive to the damp-

ing effect of magnetic shear and hence tend to be radi-

ally localized.

67

The flute mode could be visualized roughly by saying that the centrifugal

force plays the role of gravity and the stable situation is “light on top of

heavy”.
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Current driven modes (kinks)

Example [Tasso, 1979]: Force-free equilibrium
j×B = ∇P = ∇Φ = j⊥ = 0, j = λB

Then (52) becomes

δW =
1

2

∫
dr




stabilizing

|B1|2 −
destabilizing
ξ⋆ · (j×B1)





It is possible to make |B1|2 = |∇×(ξ×B)|2 small, then the second
term may overcome the first one. So, for stability one should try to
prevent |B1|2 from becoming too small. It turns out that the
magnetic shear, s = (1/r)dq/dr , where q is the safety factor
measuring the pitch of the magnetic field lines, tends to increase B1

in magnitude (over the plasma radius).
While in general current-driven unstable modes are radially extended
depending on the current distribution, pressure driven modes are
rather sensitive to the damping effect of magnetic shear and hence
tend to be radially localized.
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The kink instability

Destabilizing term: −|j|(ξ⋆⊥×b) · B1

3.27 m 6= 0 modes (contin.)

Using the equilibrium relation (65) the stability condi-

tion (68) can be written in the form

1

B2
θ

(rBθ)
′ < m2 − 1 (69)

Since near the origin Bθ ∼ r, (69) predicts that the

inner core of a z pinch is always unstable to m = 1

mode.

Physical mechanism of the m = 1 instability in a pure z

pinch.

79

In a cylindrical plasma with axial equilibrium current (z-pinch)
creating a purely azimuthal (poloidal) magnetic field, Bθ, a kink-like
perturbation make the magnetic lines below closing together than
those above. The resulting magnetic-pressure-gradient force increase
the perturbation further.
The mode can be stabilized by applying an external magnetic field
parallel to the current
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Laboratory demonstration of the kink instability

One of the earliest photos of the kink instability in action - the 3 by 25 cm

pyrex tube at Aldermaston

[https : //en.wikipedia.org/wiki/Kink instability ].
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Kink instability at the Sun

Kinky flux: Ideal-MHD numerical simulations of twisted magnetic
field lines on the solar surface show how the kink instability results in
solar flares [Fan, 2005; Török & Kliem, 2005; Hanlon, 2005].
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the magnetic field lines of a coronal loop [from Török & Kliem, 2005].
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Summary (1)

Magnetohydrodynamics (MHD), in the framework of which the
plasma is treated as an electrically conducting fluid, can describe
a broad range of laboratory and astrophysical plasmas.

In particular, for high-temperature plasmas with negligible
electrical resistivity, the ideal-MHD equations remain scale
invariant in a huge range of spatial dimensions, densities and
magnetic fields; hight temperature plasmas are pertinent to the
controlled thermonuclear fusion, a successful outcome of which
would cover completely the globe’s energy needs, and physical
phenomena in the star’s atmospheres as the Sun coronal mass
ejections.

The symmetric (2D) ideal MHD equilibria are governed by the
Grad-Shafranov equation, a second-order, elliptic, quasilinear,
PDE for the poloidal magnetic flux-function.
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Summary (2)
The Solovév solution of the GS equation has been employed
extensively in tokamak studies; also, it is employed for modeling
Sun physical phenomena.
Of particular importance are force-free equilibria, having plasma
currents parallel to the magnetic field, to describing relaxed
states of the reversed-field pinch and spheromak and magnetic
field configurations in the Sun atmosphere.
The ideal-MHD linear stability is ruled by the Energy Principle,
involving the potential energy of the perturbations. Because of
the self-adjointness of the force-operator, this principle provides
necessary and sufficient conditions for stability.
Ideal MHD instabilities include pressure driven and current
driven modes, i.e. macroscopic instabilities, evolving in a fast
(Alfvénic) time scale. An example is the kink instability which
should be controlled in laboratory fusion plasmas and it plays a
role in the creation of Sun flares.
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