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The plasma microscopically:
basic parameters for lengths and frequencies



1) The Plasmafrequency
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Suppose that the number of electrons between two surfaces of area Ais N = n AxA,
where n, is the undisturbed density of the plasma. After the disturbance, the number
of electrons between the two surfaces i1s N ' = n(Ax+As). Since the total number of
electrons remains the same, N =N ' and we have,

noAx No ( As)
n = = ~n, - — .
Az + As 1+% 0 Az

We assume that the heavy ions do not move at all, so that their density remains constant

and equal to no. Since the total charge density at each point in space is p = (no — n)e,

ds
p=Mnee— .

dx

The density p is related to E via Gauss law,
6-52477;).
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The Coulomb force on an electron is,

F,=—eF, = —47TTL062S = —ks,

And the restoring force is,

d’s
meﬁ = —47rnoe2s.

By substituting in this differential equatiom s~ e'Pt,
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> oscillates with rather large frequencies ..
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_2) Debye lgngth N

p(r) = Qi(r) + en, [exp(—e‘l(/z(;)) - exp(egzgz))} :

Assume that within the plasma e V « (kT,, kT;), so thermal motion
prevents complete ion-electron recombination. Then we can expand the
Taylor exponentials, exp x = 1 + x. The Laplacian is,

vV = (7757




14 (ﬁdv(”) = 47 Q3(r) + ( L, V),

r<dr dr )\%e )\%i
I Are?n, I dre?n,
X, kI T N, KT

where Ap., Ap; are the Debye lengths for electrons and ions,
resspectively. Similarly, we can define the plasma Debye length A,
I drnge? /1 1
ok ( '_)'

Te+TZ-

It is easily verified that the solution of the previous differential
equation satisfies the requirements

V—>Q When T—>O,

.
V =0 when r— o
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7\ 1/2
Ap=6.9 (> cm with the T in K, and the n, in cm=
Mo

In fusion experiments (T ~ 10°K, n ~ 104 ecm™?):
Ap ~7Tx107*ecm < L ~1m.

In electrical discharges (T ~ 10*K, n ~ 1019 ecm™3):
Ap ~7Tx103ecm< L~ 1m.

In the ionosphere (7' ~ 10°K, n ~ 10° cm™?):
Ap ~ 0.7cm < L ~ 300 km.

In the solar corona (T ~ 10°K, n ~ 10%cm™?):
Ap ~ 0.7cm < L ~ 100.000 km .

Quasi-neutrality!!

In the solar wind (T ~ 10°K, n ~ 7 cm™3):

Ap ~ 1_0m?< L ~1AU ~ 10° km
—> deviations from neutrality are in rather small scales ..



3) Larmor radius ry:
In astrophysical conditions we usually have very high temperatures and
very low densities (relative to those of the Earth's atmosphere), while we
also have the presence of strong magnetic fields. In the solar corona,
T~10°K,n~ 108 cm3, B ~ 1 Gauss, S0,

kT \1/2 T\ 1/2 106y 1/2
o= () =10) " 27 (550)  07em.
D Amne? 7 n / 108 0.7 cm

The Larmor radius r, for speeds of the order of v ~ 200km/sec is,

po o Ve (1.6 x 10724) x (2 x 107) x (3 x 10'9) 20 m.
qB 4.8 x 10710 x 1

- rather small Larmor radii for
astrophysical scales ..

o, = eB/mc

The Larmor frequency, o,



4) The mean free path of electrons due to Coulomb scatterings:

The mean free path A of electrons due to Coulomb scattering, 1s

2.4 kT 2 T2
Mebo T 0957 k.

A p— p—
2retninA  2mwetninA n

In the solar Corona we have T ~10° K, n ~ 108 cm and hence A ~ 2500 km.
Also, regarding the plasma and Larmor frequencies we have,
—> rather small mean free paths for astrophysical scales ..

| Arne? B
Wp = —,fp:9\/ﬁ:105Hz wL:q—fleGHz
Me mc
For magnetic fields of 100 Gauss.

In such cases wherein, [(L > XA > rp > Ap) kot (w < wp < wr)]
we can take average values and treat the plasma as a common fluid.



-> Take mean values of the plasma variables:

4 TtV T ~—m~ V- T+t Ve
Flow speed: = tnom == m ~ VT,

ntmt +n—m- mtT +m—

Density: p=n"mT+n"m” =n"(mT+m7) 2nTm" =nm

T+ 1T~
; .

Pressure P = P 4+ P~ = 2nkT Temperature: T =
| 2)



MHD equations are derived from Boltzmann’s kinetic theory.



The distribution function: In 6-D phase space,

(7, ¥) = (@, y, 2, U, Uy, ;) (3.1)
The motion of each charge corresponds to the trajectory:
[2(t), (1), 2(t), va(t), vy(t), vo(t)] = [7(t), U(t)]. (3.2)

For each type of charged particle there is a function, the distribution function, f, (r,v,t),
a=e,l, which gives the density of charged particles in the 6-dimensional phase space, so
that their number dN in the unit cell of the phase space drdv to be at any time s,

AN = fo (7, 7, t) &7 d37,
where dr = dx dy dz and dv = dv,dv,dv,. The number of particles n,(r, t) per unit volume
of 3-dimensional space is for each species a,
+o0
ne (T, t) = // fo(7, ¥, t)dvydv,du, .

where T is the temperature of the gas and v,= V2kT /m is the thermal velocity.
The isotropic Maxwell-Boltzmann (1860) velocity distribution f,(r, v) gives us the
number of particles with velocity between Vv, v + dv per unit volume d3F,

exp [—zg} . (3.3)

This is the famous Maxwell-Boltzmann distribution, when the gas is in
thermodynamic equilibrium.
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(above) The Maxwell-Boltzmann distribution for the velocities v, of the atoms of a gas, for
two different values of its temperature, T, and T,, with T, <T,.

Since the Maxwell-Boltzmann distribution is isotropic, we may introduce the distribution F,(v)
instead of the distribution f,(V) so that F,(v)dv gives us the number of atoms with velocity

magnitude between v, v + dv, per unit volume d,

F,(v)dv = f,(V)d3V = f 4nvady,

Fo(v) = 4mn [

m :|3/2 2
27k’

v° exp

2
il

(3.5)
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Fo(V) [ o
° I Maxwellian distribution

of the velocities v

_ VvV
(Vg) = <Uy> = (vz) =0, (3.6)
i 1 KT
02 =+ [[[ 1@ =2 [ Fepdeo =1 = h) = ),

- - (3.7)

() =308 =35 = o2, 6.9

1 KT
(v) = - / Fy(v)vdv = \/EE, (3.9)

2kT
Umax = V9 = || ——— ,0m0v Fy(vmax) = max{Fy(v)}. (3.10)



The Boltzmann and Vlasov transport equations

Because the distribution function fo = fo(z, ¥, 2, vy, Vy, Uz, t)
IS a function of 7 variables, its total time derivative is,
dfa  O0fa | Ofa | Ofa _ Ofa | Ofa | Ofa  Ofa

i = o T Uar Ty, TV, Ty, T e, Y,



where @ = d@/d¢ is the acceleration F'/m or,

dfe  Ofa . = F S

o = o T [TVl fo
The change with time t of the function f, may be due to collisions (e.g., Coulomb
scatterings). This changes the number dN of some type a of particles in the unit

of phase volume. Therefore, we have for the time change of the function f, because
of such collisions,

—

{%Loll. - %_'_(77'6)]0@*‘ [_'ﬁﬁ]fm (3.11)

“which is called the Boltzmann equation. In the absence of collisions, the kinetic
“equation for the distribution function f, is called the Vlasov equation (1947),

—+(17-§)fa+{—' Hg}fa:(), (3.12)

which should be solved in combination with Maxwell’s equations and the expression
of the Lorenz force F=q(E+vxB/c).



The Maxwell- Boltzmann equations

The Maxwell-Boltzmann equations are the complete system of Maxwell's equations
describing the interaction of charged particles with electric (E) and magnetic (B)
fields AND the Boltzmann transport equation, which describes the evolution of the
distribution function f for each component a=i,e of the plasma,

Ofo . = do = UXB, =7, [0fa
o T V>fa+[—a<E+ =)Vl fa = 7]
— — 18§ = =4 = 185
VXE_—E§7 VXB—47TCJ‘|—EE,
V- E = 4r, V-B=0,

The system of these equations must be solved for E, B and f, self-consistently, i.e.
the correct distributions f, should be found such that they give the right expression

of (8, J) which then give (E , B) that determine the motion of the components of the
plasma.



q o=

Scattering of a charge g (an electron) by a heavier
(positive) proton, with parameter b, at an angle 6°.



Gauss’ law No magnetic monopoles
V-E=476~0 V-B=0
Faraday’s law Ampere’s law
. - 18B . - 4w - 10E 4w -
VXE:_EE VXBZT 5527,]
Ohm’s law Newton’s law
) . VDB
J=_o  (E+ - - =
j.g/‘( ‘Orc >J p(il—‘t/:—ﬁPnLJXBwLpg’

With the notation:

« E(7,t): Electric field in plasma

. B(7,¢) Magnetic field in plasma

. p(7 t): Mass density field in
plasma

« 0(7,t): Electric current density in

o plasma

—

» J(7,1): Electric current density in plasma

- V(7,t): Bulk flow speed in plasma

. o: Electrical conductivity in plasma

—

« P(r,t): Pressure

* g: Acceleration of gravity in plasma



MHD : basic interaction of magnetized plasmas

[As the Standard Model in Particle Physics]

B(r.t)




lllustration of the HD and MHD plasma interaction

N
Pois AW of state
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N .

og HD

(common gas)
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MHD approximations :

In astrophysical plasmas, the following approximations usually hold :

, ® hourelativistic motion: V/c < 1.

_ e negligible displacement current in Ampere’s law, cV x B = 4r.J + aﬁfﬁt

Let (£ — 7) the characteristic spatial-temporal scales :

-~ = B ’ 4 V
98_VE_V'E_cB Vi V"
ot~ er L'_L(C

= O

-
2
e nevlivible polarization current:

v~ ., VE cB,/V? V2
V-E=4m; J;=V= L= LL—):OL_)

—» e High electrical conductivity: ¢ ~ 6 X IDSTB-'@/SEC

c2 c2

fZG[E+L—X.§],a—>oo :?’E’-FL—XE"_‘JD
g < -
- V — — - 10F - - - dF
—E=——XxB=VXxE=—"—"=Vx(VxEBE)=
c c ot ‘ ot

— e High thermal conductivity: & ~ 6 x 10672

(the solar corona extends to the interplanetary space)

e Negligible viscosity (mainly from the ions) : g ~ 101875/ 4 Jem sec.

For example, in plasma of temperature T ~ 1DSI{, density N ~ 10% cm ™2 we have:
electrical conductivity: o ~ 1016/sec (for Cupper, o >~ 101"'/.96.6.)

. k6 x 10
thermal conduectivity: y = — =~ ]
Cp 10
viscosity coefficient : w~ 0.1(g/cm sec).

~ 0.6 (g/cmsec)



Large magnetic Reynold’s numbers

Combining Faraday, Ohm and Ampere’s equations,
1 8B J V . ~

A7 =

—

x F = —— —x EB= E VxB="J , we have
cdt o c . c

- V - 10F SB A = -
:}‘vx[—l“mr ) c } c;)c?‘t at V’x( 8 ) \ )
Assuming a constant resistivity, 7 = — const. ,

- dro
JB = S o =2l e _— VE = o B
o= V x B ’B V x B)| ~ "B~ 5
ai V X ( X ) + ;,?V i ‘v X IE?L X 4)‘ L;L ‘T}‘v | —'1?TG'L2 E
Introducing Reynold’s number E,, = = Trg,) :
7 c*
8B

ifﬁmﬁl“l 8— (L]X B)

, E
and if | B, <1 _?}VB

ot

The electric field in the frame of the movine plasma is: E=E+ =

J c BB VL J 1,V

o~ —,and Ry =— = — :
T N n - R, )
we have that E' is weaker than the induced electric field (?B) by the factor

Examples of Reynold’s number:

Witl

e Solar wind:
V ~ 400 km/s, L ~1 AU ~ 10" em, 0 ~ 10 s7' = R,, ~ 10",

e Galactic disk:
V ~ 10 km/s, L ~ 100 pc ~ 10 em, o ~ 10" —10° s™' = R,, ~ 10" — 10"

e Solar photosphere:
V~lkm/s, L~10%¢cm, o ~10" —10%'= R, ~ 10* — 10°.



Initial fux from S i & = [[ B-dS,
5

Change in fluxis: 00 = ff%B .dS - cft-l—f[fcft:l xdl-B,
5 c

ES‘(IJ]_ J‘I:'g
(7 x i} Bot = (B x 7). dist = —(V x B)- dlst.
Therefore,

Stokes

(5(1)3=_ﬂ1?><g).d§515 = —ff‘f’x(fxgj-dgcﬁt,
& g
and ~
%=g[%_f_m(mg)].d§=o,
since, _
%—f:f’x(fxgj

e a marked proton

Flux freezing




Magnetic flux tubes




The physics of magnetic flux tubes (1979-1980)

A

5000 km at
photosphere,
>

[Credit: Institute for Solar ics, Swden, wedish 1-m Solar elscpe,
September 2007, La Palma. Spain].




1[0 1979ApJ...231..260T 1979/07 cited: 20 3 =

Sunspots and the physics of magnetic flux tubes. IV. Aerodynamic lift on
a thin cylinder in convective flows.

Tsinganos, K. C.

o (] 1979PhFI...22.1847P 1979/10 cited: 7 [ =
Bernoulli forces on an elliptical cylinder by a nonuniform flow
Parker, E. N.; Tsinganos, K. C.

3(] 1980ApJ...239..746T 1980/07 cited: 43 3 =

Sunspots and the physics of magnetic flux tubes. X - On the
hydrodynamic instability of buoyant fields

Tsinganos, K. C.
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The two components of the Lorenz force:

. (VxB)xB = (B-V)B
Fr = 4 - _v<87r> Ar
The first corresponds to the magnetic pressure:
Py = ’;T

The ratio of the gass to the magnetic pressure defines the plasma f3:

P
b= BQ—/87T 4.1)
The plasma is cold if f <<1 while when 3 >> 1 is regarded as hot. The second term can

be split in two components, by defining the unit vector T tangent to the magnetic line:
(B-V)B _ Bd(BT) BITdB  B*dT

4 CAnr ds  Ar d8+47'l'd8
d B2 B2 d B2 B2 . 4T . N
—T—— L kN=T — N, — =kgN=—
ds8r an” dssr TR @ TR

where « 1s the curvature equal to 1/R, with R the radius of curvature of the magnetic line
and N the first nomal vector. The first term neutralizes the force of the magnetic pressure
gradient along the magnetic field, so that only remains the magnetic pressure gradient
perpendicular. The second term appears only for curved magnetic lines and is directed
towards the local center of curvature. Because it is similar to the tension in a bent string,
or to the tension in a stretched rubber band, it is called magnetic tension.



The magnetic tension creates the Alfvén waves, which propagate in a
magnetized plasma at the Alfvén speed and are the main mode of
propagation of disturbances in a magnetized plasma,

B,
Va= 4.2
A \/m y ( )

where V, defines the Alfven velocity. Thus, these waves propagate

with the Alfvén speed along the dynamic lines of the magnetic field B,
which depends on the intensity of this magnetic field and the density

of the plasma. When the waves propagate at an angle 0 to the field B,
their speed V,, = w/k is less, reduced by the cos 0. Obviously in a directi
perpendicular to the magnetic field B, 6 = 90°, the waves do not
propagate. In Alfvén waves the ions move under the influence of the
restoring force of the magnetic tension of the curved magnetic lines.
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Magnetohydrodynamic waves in the plasma:

(a) Perpendicular to a magnetic field, longitudinal sound waves
propagate with speed VV,2 + C.2.

(b) Transverse Alfvén waves with speed V, and longitudinal sound
waves with speed C, propagate parallel to the magnetic field.

At a random angle to the direction of a magnetic field, three MHD

waves propagate: Alfvén waves, slow and fast MHD waves.



Diagram of phase velocities 06

for the three characteristic

MHD waves: Fast (external) o
Alfvén and slow (internal), |
when V, =0.5>C, =0.4. In ’
the direction of the x-axis, 2
the phase velocity of the 04
fast wave isV, =VV,2+C2 08}

= 0.64.
Group velocity diagram for

the three characteristic MHD 061

waves: Alfvén (black marks), 041
slow (inner curve) and fast 0.2 |
(outer curve) when V, =0.5> 2z of
C. = 0.4. The two spherical 02|
triangles are internally oal

terminated with characteristic !

velocity C; = (V, C)AV,2 + C2
= 0.31.
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V. ~ 1000 km/s

Low solar
corona

6=0°
6 = 3r/2 C, ~ 200 km/s




B=0

‘ YA

- RAAA

B=B,z

AMAAAAAAAAA
Magnetic pressure

bl bl bl bl bl bl ~
" " " " " " "
. . " " " " n
% % % % » » -u

From Ampere’s law we get for the current that creates this field :

- = dw - 4w oB. HE AB. dr I,
XxB=—J= —J,=— = — = —— = ——
v c = c dy = c AyAz Ay = c Az

From Laplace we get the force on the plasma :

_ IxB Azl B. F, I.B. B?
F = F =_ r-r Y o Trmr 0
c = fy c = MArAz c\z Sr’

where we substituted the mean value of B. on theplane y =0, B. =

B, /2. Hence, the force per unit area (pressure) is

BE
PJI:S_T?'=

— AB., = B,.
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H Magnetic support of

; % i prominences
™
"’ i VP — pgz+ (V x B) x B/dr =0
B z — — pgz + X X ™ =
B \\/
Q:j// » (Equation of force balance)
®) x ASsume:

1. Constant horizontal field B,
2. Constant temperature T,
i 3. P=P(X), p=p(X), B, = B,(X)
B 4. A=2KT,/mg, the scale height
B 5. P=2kpT/m, equation of state
S 6. Force balance in x-direction:
8 —pg+(B,/4m)(dBx/dx) = 0,




d B> B? B’
—(P+=2) =0 = P4 2= 2
z. o udjﬁt(csra;:_g &ﬁé)nrsg, b., b, xar X, * ST 7T ,

B. B, o
In terms of ». = B bo = R X =51
We take the following differential equation for b,
db
1—b2 = bo—— .
_ _ z dX

With solution,

b, = tanh X Bi(z) _ tanh Bioo @ P(z) = Boc sech? Bioo @

=Y B B, 2A° YT Tsn B, 2A°

In this solution it is worth noting the following. First, the plasma pres-
sure at the center of the prominence equals to the magnetic pressure of
the vertical magnetic field at infinity. Second, the width of the promi-
nence is Ax = 4A(B,/B,,). Third, with the observational fact that the
observed width of prominences 1s Ax = 8000 km, and that A = 200 km,
we must have B, ~ 0.1 B,. That is, the magnetic support of the promi-
nences requires only a small perturbation (B,) in the external field (B,).



tanhx

Lo} _
I}.i:-
— 1ok

— sech(x)

— sech?(x)




Erupting prominence, March 30, 2010, SDO







Magnetic buoyancy

Magnetic buoyancy

Gravity

Photosphere
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Magnetic buoyancy



Magnetic Buoyancy and the Formation of Sunspots
THE FORMATION OF SUNSPOTS FROM THE 1955, ApJ 121, 491

SOLAR TOROIDAL FIELD*

EUGENE N. PARKER
Department of Physics, University of Utah, Salt Lake City, Utah
Received October 18, 1954

ABSTRACT

It is shown that a horizontal magnetic flux tube in an electrically conducting atmosphere is buoyant
and will tend to rise. This magnetic buoyancy is large enough to bring an occasional strand of flux from
the general solar toroidal field up into the photosphere, if we assume general field densities of a few hun-
dred gauss farther down. Identifying the intersection of such ropes with the photosphere as the source
of sunspots, we may deduce several general characteristics of the spots, e.g., east-west orientation,
bipolarity, appearance only in low latitudes, migration, reversal of polarity, etc. The linearized static
equilibrium equations for a flux tube are developed. With a cooling mechanism, such as that suggested by
Biermann (1941), we find from the equilibrium equations that a sunspot group should consist of a diffuse
flux tube of 10~-100 gauss and 10° km extent in the photosphere, forming eventually a number of cool
intense cores of several thousand gauss.
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The Parker dynamo (1955)

HYDROMAGNETIC DYNAMO MODELS

EUGENE N. PARKER
Department of Physics, University of Utah, Salt Lake City, Utah
Received October 18, 1954, revised May 11, 1955

ABSTRACT

The purpose of this paper is to investigate the steady-state amplification of magnetic fields in a fluid
It is shown that a rotating sphere of conducting fluid can regenerate a dipole magnetic field. It is suf-
ficient for the angular velocity of rotation to vary with distance from the axis of rotation and for cyclonic
fluid motions to be present The nonuniform rotation generates a toroidal field from the dipole field; the
cyclones generate, from the toroidal field, loops of flux in the meridional plane which coalesce to amplify
the dipole field The rotating sphere is discussed in relation to the liquid core of the earth and the geo-
magnetic dipole field. If, instead of a rotating sphere, one has a prismatic volume of fluid, it is possible
to construct migratory dynamo waves The dynamo waves are discussed in relation to the solar convec-
tive zone; it is shown that such waves can account for many of the principal features of the observed
solar magnetic activity

The Q - effect and the o - effect. (Image by E. F. Dajka).

. P 1
field lines
|| Differential

rotation

Twisting of
the field lines

A

1955, Apd 122, 293

predicts that sunspots (star spots)
appear periodically and within a period
- for the sun it is the 11-year

- of a higher heliographic
latitude, about 30 ° -35° , walk to
the equator ( Sporer's law ). The
sunspots initiated by strong magnetic
fields have a p-main spot (p =
preceeding ) and an f-main spot (f =
following ), the p-spot is somewnhat
closer to the solar equator, the two
main spots form a bipolar group in
which magnetic field linesexit from or
enter the sun. Furthermore, bipolar
groups correspond on the northern and
southern hemisphere of the sun,
whereby the magnetic orientation of
the groups is opposite.
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Dynamo: a simple example

Suppose that we have a weak initial magnetic field B = B,y in a plasma of
infinite electrical conductivity c. Also suppose that we also impose a velocity
field which acts from time t = 0 onwards,

2
— )

T
V=V,e v 2x.

Then, from the dynamo equation we have,

Therefore, a new magnetic field is created in the x- direction with magnitude
that increases linearly with time,

2

2V, Boyt —¥
——se Y.
2
va

Thus, from an initial weak magnetic field in the y-direction, a strong magnetic
field in the orthogonal x-direction is produced - mainly near the y- axis.

B, =



The Parker instability in the ISM (1957)

THE DYNAMICAL STATE OF THE INTERSTELLAR
GAS AND FIELD*

E. N. PARKER
Enrico Fermi Institute for Nuclear Studies and Department of Physics, University of Chicago
Received January 3, 1960, revised March 10, 1966

The Rayleigh-Taylor instability of magnetized gas supported by gravity.
Buoyancy

Parker, 1966, ApJ,145, 811

l | _ Tarantula Nebula,
. J. Webb telescope

Fic 2.—Sketch of the local state of the lines of force of the interstellar magnetic field and interstellar
gas-cloud configuration resulting from the intrinsic instability of a large-scale field along the galactic
disk or arm when confined by the weight of the gas.
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'he Sweet-Parker magnetic reconnection mode

Sweet-Parker model

L1

Geometry of the Sweet—Parker (top) and Petschek reconnection model (bottom).

The geometry of the diffusion region (grey box) is a long thin sheet (A>>0) in the

Sweet—Parker model, but much more compact (A = o) in the Petschek model.

The Petschek model also considers slow-mode MHD shocks in the outflow region.

[From Aschwanden (2020)]

The Sweet—Parker reconnection allows for reconnection rates much faster than global diffusion,
(typical time-scales are of a few tens of days) but it is not able to explain the fast reconnection
rates observed in solar flares. However, it was the first basis for understanding solar flares.



The individual links 1n the chain of solar MHD:

Hot solar corona Produces solar wind

Currents in loops \

Magnetic buoyancy

[ T~

Produce hot corona




The majestic Solar Corona
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Total Solar Eclipse 2008 © 2008 Miloslav Druckmiiller, Peter Aniol, Martin Dietzel, Vojtech Rusin

Total solar eclipse of 1.8.2008, Novosibirsk (Siberia, Russia) Credit: M. Druckmuller)




Proba3’



Parker’s theorem for the nonequilibrium of
nonsymmetric magnetic field topologies (1972)

THE ASTROPHYSICAL JOURNAL, 174:499-510, 1972 June 15
© 1972. The American Astronomical Society. All rights reserved. Printed in U.S.A.
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TOPOLOGICAL DISSIPATION AND THE SMALL-SCALE \___HJ
FIELDS IN TURBULENT GASES*

E. N. PARKER
Department of Physics, University of Chicago
Received 1971 December &

ABSTRACT

It is shown that a large-scale magnetic field possesses a hydrostatic equilibrium only if the pattern of
small-scale variations is uniform along the large-scale field. Thus equilibrium obtains only if the varia-
tions in the field consist of simple twisting of the lines, with the twists extending uniformly the full
length of the field. Any more complicated topology, such as two or more flux tubes wrapped around each
other to form a rope, or braided or knotted flux tubes, is without equilibrium, no matter what fluid
pressures are applied along the individual lines of force. The result is rapid dissipation and field-line
merging, which quickly reduces the topology to the simple equilibrium form. It follows from this general
theorem that line merging has important consequences in turbulent fields. In spite of large magnetic
Reynolds numbers of the individual eddies, the line merging reduces the small-scale fields in the turbu-
lence below the wvalue for equipartition with the turbulence. The effect has important astrophysical

implications. It explains the absence of strong small-scale fields in the solar photosphere and in inter-
stellar space in spite of the vigorous turbulence. - z2=0

Coronal heating by many current sheets
occurring in magnetic loops in the solar corona

z
THE ASTROPHYSICAL JOURNAL, 330:474-479, 1988 July 1 \_\;_ ) [) _\2
4

=L
() 1988, The American Astronomical Society. All rights reserved. Printed in U.S.A. \\ \ g K)
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NANOFLARES AND THE SOLAR X-RAY CORONA' ")) ¢ _))_
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E. N. PARKER

Eugene N. Parker

Enrico Fermi Institute and Departments of Physics and Astronomy, University of Chicago



ABSIRAUL

It is shown that when the magnetic field and the fluid motions in an ideal magnetofluid have a
translational symmetry then, apart from isolated topologies, invariance along this principal direction
of the fields is a necessary condition for magnetohydrodynamic equilibrium. In well-behaved field
topologies lacking this invariance, nonequilibrium is the result. This theorem is analogous to the
well-established Taylor-Proudman theorem in fluid dynamics and runs parallel to Parker’s theorem
for the necessary conditions for equilibrium in magnetostatics. It appears then that topological

nonequilibrium may indeed be the basis for the continuous activity of the variable hydromagnetic
fields in the universe.

Subject heading: hydromagnetics

1. INTRODUCTION

There are presently available two theorems on the necessary conditions for the steady (9 /3¢ =0) equilibrium of
velocity fields and magnetic fields. An equilibrium velocity field v in an ideal fluid of density p and pressure P satisfies
Euler's equations,

p(vv)o=—VP+2ppXQ, (1)
v v=10, (2)

in a frame of reference that is rotating with an angular velocity €. The Tavlor-Proudman theorem (Proudman 1916:

842 TSINGANOS Vol. 259

The analysis and the results in the last two sections were carried under the assumption that there is no equipartition
of energy between the magnetic and the velocity fields [Chandrasekhar 1956, and for an extension to incompressible
fluds, p = p(A), see Papers I, II],

e ®

Evidently the above solution satisfies identically the equations of motion, irrespective of any spatial dependence of the
fields. Notice, however, that the case (92), wherein the centrifugal force arising from the fluid motions is exactly
balanced everywhere by the tension of the lines of the magnetic force, is so far the only known solution of the MHD
equations lacking any symmetry. It therefore seems to represent an isolated case.

The second assumption which enabled us to deduce the invariance requirement equation (56), 1s the analyticity
condition, equations (18)—(21) or (63)-(66}. Fields that are not analytic in the near neighborhood of a two-dimensional

o(x,y,z)==



Campfires’ are miniature solar flares discovered
by ESA’s Solar Orbiter mission.







Magnetic switchbacks observed by the PSP

Parker Solar Probe observed switchbacks — traveling disturbances in the solar wind that
caused the magnetic field to bend back on itself — an as-yet unexplained phenomenon.
Credits: NASA’s GSFC/Conceptual Image Lab/Adriana Manrique Gutierrez




(a) (b) (c)

A
w N

/A Wai a

Illustration of the formation mechanism of magnetic switchbacks,
observed originally (2018) by NASAs Parker Solar Probe spacecraft and
followed by the ESA/NASA Solar Orbiter spacecraft (2022), wherein
there Is an interaction between a region of open field lines and a region
of closed field lines. In this scenario an open magnetic field line is (a)
dragged against a large coronal loop, by global circulation in the corona,
(b) undergoes interchange reconnection, and (c) effectively jumps the
approximate width of the originally closed loop, launching an S-shaped
switchback in the magnetic field into the corona. Fisk & Kasper (2020),
Telloni et al (2022). [Credit: ESA/NASA/GSFC].
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| Global Circulationgof Open Field Lines >

Q e O Escaping

switchback

Interchange
reconnection

e — S s AL . SN a T e
llustration of global magnetic field circulation enabled by interchange
reconnection. In this scenario an open magnetic field line is (A) dragged
against a large coronal loop, by global circulation in the corona, (B)
undergoes interchange reconnection, and (C) effectively jumps the
approximate width of the originally closed loop, launching an S-shaped
switchback in the magnetic field into the corona. Fisk & Kasper (2020),

Telloni et al (2022). [Credit: ESA/NASA/GSFC]

- -




National Aeronautics and Space Administration N(Qﬁ
<t

Where Do Switchbacks Come From?

Switchbacks are :
sudden reversals ’ :

in the solar ’ ’ ) %
wind’s magnetic L. ‘

field. They were " | eeonnecting field lines create flux rope
a surprise 3
discovery as
NASA's Parker
Solar Probe
made its first
close flyby of
the Sun in
November 2018.

e Expanding plasma ripples .f--- :

N \S\ - &
o Shear-driven turbulence

How do
switchbacks
form? Here are
the current
theories
competing to
explain them.

(Not to scale) . - ——— - j S )

— e

faster wind —

Slow wind reconnects to fast,
fast wind overtakes slow
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Recurrent solar jets in active regions

V. Archontis?, K. Tsinganos?, and C. Gontikakis®

1 School of Mathematics and Statistics. St. Andrews University, St. Andrews, KY16 9SS, UK
e-mail: vasi | i s@ts. st - and. ac. uk
2 Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Panepistimiopolis,
Zografos 157 84, Athens, Greece
3 Research Center for Astronomy and Applied Mathematics, Academy of Athens, 4 Soranou Efessiou Str., Athens 11527, Greece

Received 27 November 2009 / Accepted 24 February 2010
ABSTRACT

Aims. We study the emergence of a toroidal flux tube into the solar atmosphere and its interaction with a pre-existing field of an active
region. We investigate the emission of jets as a result of repeated reconnection events between colliding magnetic fields.

Methods. We perform 3D simulations by solving the time-dependent, resistive MHD equations in a highly stratified atmosphere.
Results. A small active region field is constructed by the emergence of a toroidal magnetic flux tube. A current structure is build up
and reconnection sets in when new emerging flux comes into contact with the ambient field of the active region. The topology of the
magnetic field around the current structure is drastically modified during reconnection. The modification results in a formation of new
magnetic systems that eventually collide and reconnect. We find that reconnection jets are taking place in successive recurrent phases
in directions perpendicular to each other, while in each phase they release magnetic energy and hot plasma into the solar atmosphere.
After a series of recurrent appearance of jets, the system approaches an equilibrium where the efficiency of the reconnection is
substantially reduced. We deduce that the emergence of new magnetic flux introduces a perturbation to the active region field, which
in turn causes reconnection between neighboring magnetic fields and the release of the trapped energy in the form of jet-like emissions.
This is the first time that self-consistent recurrency of jets in active regions is shown in a three-dimensional experiment of magnetic
flux emergence.
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jet

Emerging \ecexisting flux
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Archontis, Tsinganos and Gondikakis, Astronomy & Astrophysics, 512, L2, 10 pp. (2010).

Fig. 2. 3d visualization of the jets (velocity isosurfaces, yellowish/grey) at ¢t = 144 (left) and t = 184 (right). Side views are shown for the two
snapshots. The current sheets (colored red) are visualized by calculating J/B. The horizontal slice is a magnetogram at z = 2. Note that the two
upward elongated jets are emitted along similar directions (oblique-left). The arrows (black color) show the direction of the full magnetic field
vector.
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of e-m field:
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The Parker limit for magnetic monopoles (1982)

Magnetic monopoles and the survival of galactic Grand unified and Superstring
magnetic fields theories, predict existence of MM

In his 1931 paper Dirac predicted the relation
between the elementary electric charge e and

Show affiliations the magnetic charge g:

Turner, Michael S. ; Parker, E. N. ; Bogdan, T. J.

gy L1, 1T

g=ngp =N~ e,
“15 o2 <1 qp1 j d
The so-called Parker Bound, F<10 5 ecm™2 s 1srlis
obtained by requiring that magnetic monopoles do not Where n=1.2,... and go Is the unit of the
; ; ] ; ] magnetic charge
short-circuit the galactic magnetic field faster than the Mass of magnetic monopoles (MM):
dynamo mechanism can regenerate it. Clasical: most recent searches are performed at

the CERN LHC. The ATLAS experiment
sought gp MMs with masses of up to 2.5 TeV
Intermediate mass: 3+7 TeV

Supermassive (GUT theories):

MM = 1016--1017 GeV ¢ 2 (1kg = MeVi/c?)

There are no definite theoretical predictions of
the abundance of cosmic MMs. A bound
largely used is the so-called Parker Bound,
F<10"5 cm2s7!srtobtained by requiring
that MMs do not short-circuit the galactic
magnetic field faster than the dynamo
mechanism can regenerate it. By taking into
account typical coherence lengths (£~1 kpc)
of the galactic magnetic fields, the limit
becomes F <mj; 105 cm2s~1sr !, for
my7>1, with my; =mM/10%7 GeV ¢ 2. Similar
Publication: Physical Review D (Particles and Fields), Volume 26, Issue 6, COf}SidethiO;‘tShapplilethO the SUVE{iV;f}' IOJ an y
early seed of the galactic magnetic field yie

15 September 1982, pp.1296-1305 a more stringent bound, the ‘Extended Parker

Bound’ (EPB):




Basic equations:

7 (ﬁl"rz) = 0 (mass conservation)
r

Parker wind theory | 7

dV dP _GM
VS =T _ 5
dr dr

— (momentum conservation)
2

1A
P=pV21, 2kTq

]

Vs
3 (simple) equations/ /

, (equation of state)

V
M
b
V% is sound speed - most probable proton speed in a Mazxwellian with temperature Tp. Tt
i
. - I i
r V p 17V GMm Gorr v- M
E=— M=_—,p==—,A=<-|— = ~ 12 for Tp =~ 10° °K V. = 131 km ’ P
ra Ve P o 2 ( Vi ) 2rokTn "o taVs /s 1? _
Two egs for p(R) and M(R):
d ) ) B=B
= (pMR*) =0 = pMR® = i = const. C
B> B,
dM  dp P 1 dn* 2 ZR— A
M—4 =+ A—-=10 — = —_—.
p dR+cER+ R: :._ﬁfz dR R2Aarz—1
AMEOA 2 . ..
In M — — E +In A" =1InE = const. , (Bernoulli 1ntegra1:3

. dA? 0
critical point (R = Re , M =1):

5 =g B=Re(l4e), M=1M(14¢)




Ib) 1D-MHD: The Weber-Davis magnetized wind

600 Myr — 08
— 086

0.4

Distribution of Vsini for 1M, stars of different ages
(Bouvier, Forestini & Alain 1997)



Parker vs. Weber/Davis Topologies of V,(R) :




Slow and Fast magnetic rotators :

1., GM  rB.O 1 GM B0
E=Vigh— S Sy S Teet oLe q0L,
2 T Iy LE "o L r .
£, oL

where £, 15 the energy of the thermally driven Parler wind and DL the Poyvnting energy of the
magnetic rotabor. Depending on which of these two terirs dominates we have two possibilities:

1. £, % 0L: Slow magnetic rotabor. In this case we have a thermally driven Parker wind

2. &, <& [1L: Fast magnetic rotabor. In this case we have a magnetorotationally driven wind



Slow magnetic rotator (our Sun)
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I1. 2-D MHD plasma outflows: the issue of collimation

a)  Time-independent (steady) outflows i) meridionally selfsimilar
1) radially selfsimilar

b)  Time-dependent plasma outflows




gl Blnary stars - microguasars
(SS 433)

-

25000 AU
Planetary neboulae 0.4 Ly.
(Twin exhaust nebulé Neutron Stars
. & | ~ (crab)

200.000 L.y.




a) 2-D Time-Independent (steady) studies -
some general conclusions :

Classes of analytical solutions via a nonlinear
separation of the variables

Critical points, characteristics and the problem of
causality

Classification of observed outflows in terms of
efficiency of magnetic rotator

Topological stability of collimated outflows
etc, etc.




P rotostellar jet HH 111

Microquasar 1E1 740.7-2942

Quasar/radio galaxy

3 light years




systematic

Main assumptions for getting analytical solutions

1. Ideal MHD.

2. Symmetric outflow configurations, 3 = 0, in system (z1, z2, 3)
€.g., axisymmetric, or translationally symmetric.

3. Natural variables are poloidal Alfvén number and magnetic flux
function (M, A) = switch from (x1,x3) to (M, A).

4, Consider Alfvén number M(z,z5) and cross-section of outflow
tube G(x1,x5) as functions of a single variable x:
M= M(x), G =G(x)

L. In spherical coordinates (x1 = r,z9 = 6 ,) this unifying scheme
contains two large groups of exact MHD outflow models:

(o) x = 0 — radially self-similar models with conical critical
surfaces. Prototype is the Blandford & Payne® (1982) model :

A(r,0) = g(0)r* and = = 3/4.
(8) x = r — meridionally self-similar models with spherical crit-
ical surfaces. Prototype is the Sauty & Tsinganos? (1994) model :

A(r,0) = f(r)sin®*6 and e=1.

II. In orthogonal coordinates (ry = x,rs = y,) this unifying
scheme contains the group of planarly self-similar MHD models.
Prototype is the Petrie et al® (2002) model :

A=G(z)e */H

"Vlahakis & Tsinganos 1998, MINRAS, 298, 777
!Blandford & Payne 1982, MNRAS, 199, 883

2Sauty & Tsinganos 1994, A&A, 287, 893

3Petrie, Vlahakis & Tsinganos 2001, A&A, 382, 1081



rotaton axis

(a)

r=R sind

 A(R0)=g(O)R*=F(0

equator

rotation axis

A(R,0)=F(R)sin20=G(R)r2

equator

Coronal loop observed with TRACE 26 September 2000

A(X,2)=G(x)e?

.(©




The issue of singularities/critical points :

(1) Equation for derivative of poloidal Alfvén number M,:

dM?  Nuy(R, F,M,; parameters)
dR ~  D(R,F, M;parameters)

(2) Equation for derivative of thermal pressure Py:

dFy  Np(R,F, M,: parameters)

dR ~ D(R,F,M;parameters)

(3) Equation for derivative of expansion function, or P, : 5

dF Np(R, F, M,; parameters)
dR ~ D(R, F, M; parameters) ’

Difficulty: A physically accepted solution is determined by the
requirement that it should pass through critical points which
are not known a priori but are only determined simultaneously
with the complete solution !

Singularities (Critical Points) : Ny = Np=Np =D =0.

(a) Alfvén transition (star-type singularity): M, =1 a

imposes regularity condition <= streamlines avoid kink.

b) X-type MHD singularities selecting physical solution o5 |
a proxy for the imposition of physical b.c.’s at r, and oc). .

=% Obtain unique solution through critical points.
BUT o |
at which speeds are found these MHD saddle-type critical points ? o 1 2




Nature of MHD PDE’s & correct boundary conditions

I,

| \

1. Elliptic PDE's : d or dd/dn

o oo 4

dx? * ay?
= Dirichlet or Newmann B.C.’s on a closed surface
2. Hyperbolic PDE's : t V\

ro_ 106 Yoo

Az crotr C-

® D

= Cauchy B.C.’s on an open surface. — > P <+
3. Mized Elliptic/Hyperbolic PDE’s : —» x
1-M2[_,, VA-V(VA) v d)gnd dd/dt
[ h3 VAR Vi-weRrvh oz

Elliptic in domains F;, hyperbolic in domains H;, i=1,2, ...

S A :
- i |
— Elliptic | Hyperbolic Elliptic | Hyperbolic
T s A s

= B.C.’s on separatrices SS' in hyperbolic domains H;.

But, these separatrices SS" in domains H; are not known a priori
but should be constructed simultaneously with solution.



The Issue of causality and limiting characteristics:

The set of steady MHD equations are of mixed elliptic/nyperbolic
character.

In hyperbolic regimes exist some separatrices which separate
causally areas that cannot communicate with each other via an
MHD signal.

[ They are the analog of the limiting cycles in VVan der Pol’s
nonlinear differential equation, or, the event horizon in relativity.]

The MHD critical points appear on these separatrices which

do not coincide in general with the fast/slow MHD surfaces.
To construct a correct solution we need to know the limiting
characteristics, but this requires an a priori knowledge of the
solution we seek for !

Tsinganos et al, MNRAS, 283, 811, 1996
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Plot of the characteristics
In both hyperbolic regimes
of a radially self-similar
jet. In each of the two
hyperbolic regimes (white
domains) there are two
families of characteristics.

< Hyperbolic
A
‘ Elliptic
slow limiting
L= characteristic




Plot of the characteristics in the 2" hyperbolic regime
of a meridionally self-similar jet.

In hyperbolic regime there are two families of
characteristics — one of them is t&angent to the

Dotted lines: poloidal magnetic field lines,
Solid lines (characteristics)
Thick-dotted line (cusp surface),

Dotted line/(fast-magyietosonic)
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[see Sauty, Trussoni and Tsinganos AA, 421, 797, 2004]



Magnetic fieldline

/

Magnetic hoop stress

Basics of jet acceleration and collimation
Z

Source

» On the disk, z=0, the rotational kinetic energy

exceeds the magnetic enegy —>Keplerian rotation
of the B-field line rooted at r,,.

Up to the Alfven distance, the B-field is strong
enough - forces the plasma to follow the
Keplerian rotation of the roots of the magnetic
fieldline. In particular, when the inclination angle
Is less than 60°, we have the “bead on a rotating
wire” magnetocentrifugal acceleration.

After the Alfven distance, the poloidal B-field
energy Is weaker than the poloidal kinetic motion
—> the B-field follows the plasma. The plasma
Inertia leaves it behind the rotating B-line -

creation of strong B,

The created strong B,, collimates the magnetic
field lines towards the z-axis and forms the jet.



Removal of disk angular momentum by magnetocentrifugal disk-winds:

A Keplerian disk (Qf) accreting at a rate M, needs to get rid
of angular momentum in a radius w,

- 1
J,

ﬂ=§

Qrw-M,
A disk-wind carries away angular momentum with a rate :
‘.}I—w == QII,_' m_i;lfw

If the disk-wind carries away a fraction f (0 < f < 1) of the
angular momentum of the accreting matter,

Jy = fjﬂ, then (e.g., =0.5)
My _f®, =f/50=1/100

5

M, 2wj

With a magnetic lever arm w ~ bw,, the disk-wind needs to

carry away only a few percent of the accreting mass rate.



Initial molecular
cloud

Central condensation
and disk

Protostellar
object and jets

Star and
planets



Angular momentum conservation and how a protostar
manages to overcome it.

Protostellar jets: they are the "ex machina Deus™ In star
formation...




An energetic criterion for cylindrical collimation:

, A(pE) Af=f(non polar streamline) - f(polar axis)
A
* ¢ <0-->No collimation
¢ >0--> Collimation
£ =u+e
Efficiency of Pressure Confinement
AP =K
P
Efficiency of the Magnetic Rotator
LOQ-EBp , +AE, h . GM (—AT
g= where =
LC) I TO

0
e ¢ >0 --> Efficient Magnetic Rotator (EMR)

"¢ <0 --> Inefficient Magnetic Rotator (IMR)



Type 2 (Narrow Line) Type 1 (Broad Line) Type 0 (Unusual)

QD F
S
(@4
o Seyfert 2 ; ) )
-8 Narrow Emission Line Galaxies Seyfert 1 Broad Absorption Line QSO ?
0% IR Quasars ? Quiet Quasars (QSO)
Narrow Line Radio Galaxies Broad Line Radio Galaxies Blazars
yo .
> Fanaroff-Riley | 9 BL Lac Objects
o . .
1 Rich environment?
o Smaller torus opening angle?
o
©
o

0— ! ©6—7F eop

Fanaroff-Riley I Steep Spectrum Radio Quasars
Poor environment ? > (FSRQ)
Larger torus opening angle? —>Flat Spectrum Radio Quasars

Decreasing Viewing Angle (Urry & Padovani 1994)

]

BH\pin ?

FnvironAkment ?
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Extension of Parker’s Solar Wind work
to General Relativity by his students
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Further Reading:

1. Aotpopvoikn I[TAdoparog, K. Totykavog, oed. 538, Unibooks
Publications, (2017)

2. 20yypovn Oswpntik) Mnyovikn pe 200 tapadeiypoto Kot
Auéva tpopAnuata, K. Totykavog, ogA. 570, Unibooks
Publications, (2022)

3. Protostellar Jets in Context (Astrophysics and Space Science
Proceedings) 2009th Edition, by Kanaris Tsinganos, Tom Ray,
Matthias Stute, Springer; 2009th edition (2009)

4. Solar and Astrophysical Magnetohydrodynamic Flows (Nato
Science Series C:, 481) by Kanaris Tsinganos (1996), Springer;
1996th edition (1996)

[https://www.amazon.com/Books-Kanaris-
Tsinganos/s?rh=n%3A283155%2Cp_27%3AKanaris+Tsinganos]

5. For a detailed list of publications in journals by the author,
see the site:

http://users.uoa.gr/~tsingan/CV_2024.pdf
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