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Outline

• linear (normal mode) stability analysis:
methodology to find growth rates and eigenfunctions
based on a single “principal” differential equation

• notable examples of classical instabilities (Rayleigh-Taylor,
Kelvin-Helmholtz, and the influence of magnetic field on
them, current-driven)



Why study MHD instabilities

• to understand the evolution of perturbations is essential in all
kinds of equilibria in Physics (to know if a given equilibrium is
stable and the period of small oscillations – to know the growth
time if it is unstable)

• instabilities are important in many Astrophysical processes
(cloud collapse, disk accretion, generation of turbulence /
magnetic reconnection / energy dissipation / particle
acceleration)

• magnetic fields could have important (or even the dominant)
role in these instabilities

• may help to solve the thermonuclear fusion problem
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How to study MHD instabilities
Sketch of the methodology of a linear analysis:

• choose appropriate theory (fluid approach including or not
gravity, relativity, viscosity, resistivity, heat transfer, radiative
cooling, . . . )

• define the steady unperturbed state, add perturbation and
linearize the equations

• decomposition to normal modes – whenever possible – offers a
way to investigate the physics underlying each mechanism and
find the growth rates

In the following ideal MHD will be used, in planar or cylindrical
coordinates. In each case a “principal” equation will be found,
whose solution, subject to given boundary conditions, specify the
dispersion relation
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Ideal (non-relativistic) MHD
∂ρ

∂t
+∇ · (ρV ) = 0 ,(

∂

∂t
+ V · ∇

)
P = c2s

(
∂

∂t
+ V · ∇

)
ρ ,

ρ

(
∂

∂t
+ V · ∇

)
V = −∇P + (∇×B)×B + ρg ,

∂B

∂t
= ∇× (V ×B) ,

∇ ·B = 0 .

(Lorentz-Heaviside units)

Introduce the total pressure

Π = P +
B2

2
.
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Example in planar geometry

• Suppose the unperturbed steady-state has density ρ0(x),
pressure P (x), bulk velocity V 0 = V0z(x)ẑ + V0y(x)ŷ, magnetic
field B0 = B0z(x)ẑ+B0y(x)ŷ, and the gravity is uniform g = −gx̂.

x

z

g

(e.g. two semi-infinite plasmas in contact at the interface x = 0)

• The zeroth order equations are satisfied provided that

dΠ0

dx
= −ρ0g .
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Linearization

• Adding perturbation ρ = ρ0(x) + ρ1(r, t), Π = Π0(x) + Π1(r, t),
V = V 0 + V 1(r, t), B = B0 +B1(r, t), and linearizing we get
differential equations whose coefficients depend only on x.

• This allows for Fourier decomposition into modes

ρ1 = ρ1(x)e
i(kyy+kzz−ωt) ,

Π1 = Π1(x)e
i(kyy+kzz−ωt) ,

V 1 = [V1x(x)x̂+ V1y(x)ŷ + V1z(x)ẑ] e
i(kyy+kzz−ωt) ,

B1 = [B1x(x)x̂+B1y(x)ŷ +B1z(x)ẑ] e
i(kyy+kzz−ωt) .
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The system becomes


8× 10 array

function of x (and ω , ky , kz)





ρ1
B1x

B1y

B1z

V1y

V1z

dV1x/dx

dΠ1/dx

V1x

Π1


= 0

and gives ρ1, B1x, B1y, B1z, V1y, V1z,
dV1x

dx
,
dΠ1

dx
as functions of

V1x, Π1.
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Thus the system is reduced to the two equations

d

dx

(
V1x

Π1

)
+

(
2× 2 array

function of x (and ω , ky , kz)

)(
V1x

Π1

)
= 0 .

Better to use the Lagrangian displacement ξ in the x direction,
connected with the velocity

V1x =
dξ

dt
≈ ∂ξ

∂t
+ V 0 · ∇ξ

It has the form ξ = ξ(x)ei(kyy+kzz−ωt), so

V1x ≈ ∂ξ

∂t
+V 0 ·∇ξ = −iω0ξ , ω0 = ω−k0 ·V 0 , k0 = kyŷ+kzẑ
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Two important quantities

ξ
perturbed positions

x

Instead of V1x and Π1 use

• the Lagrangian displacement y1 ≡ ξ , and

• the perturbation of the total pressure in the perturbed position

Π1 + ξ
dΠ

dx
≈ Π1 + ξ

dΠ0

dx
, or, y2 ≡ Π1 + y1

dΠ0

dx

The advantage is that these two quantities are everywhere
continuous, even at locations where the unperturbed state has
contact discontinuities
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The system becomes

d

dx

(
y1
y2

)
+

(
f11 f12
f21 f22

)(
y1
y2

)
= 0 ,

where f11 = gρ0

(
κ̃2

A
− ρ0ω

2
0

S

)
, f12 =

κ̃2

A
,

f21 = −A− g2ρ20

(
κ̃2

A
− ρ0ω

2
0 + F 2

S

)
, f22 = −f11 ,

F = k0·B0 , A = ρ0

(
ω2
0 −

F 2

ρ0

)
, S = ρ20

[(
B2

0

ρ0
+ c2s

)
ω2
0 −

F 2

ρ0
c2s

]
, ,

κ̃2 =
ρ20ω

4
0

S
− k20 .

All other perturbations are given functions of y1, y2, e.g.,

ρ1+ y1ρ
′
0 =

ρ20
S
(F 2y1+ω2

0y2) and incompressibility means S → ∞.
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The “principal” equation

Since the system is linear only the ratio Y =
y1
y2

is uniquely

defined. To solve the equation for this (complex) function is
sufficient (minimalist approach)

dY

dx
= f21Y

2 + (f22 − f11)Y − f12

We just need to integrate this single, first order, differential
equation, requiring Y to be everywhere continuous and satisfying
the correct boundary conditions at the extreme values of x.

Knowing Y we can find y1, y2 from

y′2
y2

= −f21Y − f22 , y1 = Y y2 (or
y′1
y1

= −f11 − f12
1

Y
)
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• The goal is to find the dispersion relation between ω and k0,
such that Y satisfies the correct boundary conditions at the two
extreme values of x (this is an eigenvalue problem like
Sturm-Liouville in quantum mechanics)

• Temporal approach will be followed, i.e., give real ky, kz and
find complex ω for which the principal equation satisfies the
boundary conditions. Since ei(kyy+kzz−ωt) = eℑωtei(kyy+kzz−ℜωt)

the ℑω represents the growth rate of the mode (if positive)

• (Spatial approach is also possible: give real ω, ky and find
complex kz, in which case ei(kyy+kzz−ωt) = e−ℑkzzei(kyy+ℜkzz−ωt)

and 1/|ℑkz| represents the growth length)
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Boundary conditions

• At plasma interfaces Y is continuous

• If plasma has solid boundary(ies), Y vanishes there

• At x = +∞: Near infinity the plasma is uniform and Y

approaches a constant, given by the principal equation

0 = f21Y
2 + 2f22Y − f12 ⇔ Y =

−f22 ±
√
f2
22 + f12f21

f21
.

The correct sign corresponds to decreasing |y1| and |y2|, i.e., to
y′2
y2

= −f21Y − f22 with negative real part1

• Similarly at x = −∞ the correct sign corresponds to
y′2
y2

= −f21Y − f22 with positive real part

1There is a way to find Y with the correct sign automatically (without the need to look at the
equation for y2), following the “Schwarzian approach”, for details see Vlahakis 2024
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Methodology
• Shooting method:

Give k0 (ky and kz).

Give a trial value of (complex) ω.

Start the integration of the principal equation from the one end
x1, knowing the boundary value Y |x=x1, up to the other end x2.

Check if at x2 the integration gives the correct (known) boundary
value YBC. If not change the trial value of ω and repeat.
The accepted ω are the roots of the (complex) dispersion relation

Y |x=x2 − YBC = 0 .

(In practice locate the roots by defining a grid in the complex ω

plane and perform integration for each point.)

This way we find all accepted ω for which both boundary
conditions are satisfied (for each k0).
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Example

To find the roots it is sufficient to plot the isocontours of
Arg[Y |x=x2 − YBC] in the ω plane
(details in the “minimalist approach”, Vlahakis 2024)
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Analytical results

• In cases with simplified unperturbed states there are analytical
solutions of the principal equation, leading to analytical
expressions of the dispersion relation.

These offer important insight into the physics of the various
instabilities.

Next we explore some of these classical cases.
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Two semi-infinite incompressible plasmas

Two semi-infinite uniform and static plasmas with contact
discontinuity at x = 0, inside zero gravity

x

z

g1
ρ

ρ
2

Incompressibility: S → ∞.

f11 = 0, f12 = −k20
A

, f21 = −A, f22 = 0
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The principal equation is
dY

dx
=

k20
A

−AY 2 and has constant

solutions Y = ∓k0
A

in the two parts.

Checking the sign of
y′2
y2

= −f21Y − f22 = ∓k0 we deduce that the

upper sign should be used for x > 0 and the lower for x < 0.

Thus Y = − k0
ρ1ω2 − F 2

1

for x > 0 and Y = +
k0

ρ2ω2 − F 2
2

for x < 0.

The continuity of Y gives the dispersion relation

ω2 =
F 2
1 + F 2

2

ρ1 + ρ2

representing stable Alfvén waves. (We remind F1 = k0 ·B01 and
F2 = k0 ·B02.)
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Effect of finite depth

Suppose the bottom plasma has finite depth H.
x

z

g1
ρ

ρ
2

0

−H

Then in the bottom part the solution of the principal equation that

vanishes at x = −H is Y =
k0
A

tanh[k0(x+H)].

The continuity of Y at x = 0 gives the dispersion relation

ω2 =
F 2
1 + F 2

2 coth(k0H)

ρ1 + ρ2 coth(k0H)
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The meaning of F = k0 ·B0

2

x

z

g1
ρ

ρ

In general F represents the action of the magnetic tension which
acts like a spring

The restoring force per mass is

−ω2ξ = −k2v2Aξ , vA =
F
√
ρ0

(using the dispersion relation of the classical Alfvén waves)
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Add gravity (Rayleigh-Taylor instability)
f11 = −gρ0

k20
A

, f12 = −k20
A

, f21 = −A+ g2ρ20
k20
A

, f22 = −f11

The principal equation is
dY

dx
=

k20(1 + gρ0Y )2

A
−AY 2 and has

constant solutions Y =
−k0

±A+ ρ0gk0
in the two semi-infinite parts.

Checking the sign of
y′2
y2

= −f21Y − f22 = ∓k0 we find

Y =
−k0

ρ1ω2 − F 2
1 + ρ1gk0

for x > 0 and Y =
−k0

−ρ2ω2 + F 2
2 + ρ2gk0

for x < 0.

The continuity of Y gives the dispersion relation

ω2 = −ρ1 − ρ2
ρ1 + ρ2

gk0 +
F 2
1 + F 2

2

ρ1 + ρ2
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x

z

g1
ρ

ρ
2

For example, suppose we have a heavy unmagnetized plasma
on top of a much lighter plasma whose magnetic field provides
support. Then

ω2 = −gk0 +
(k0 ·B02)

2

ρ1
and the magnetic field stabilizes the Rayleigh-Taylor instability if
it is sufficiently strong and the angle between the wavenumber
and the field is small enough.
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Add velocity (Kelvin-Helmholtz instability)

f11 = −gρ0
k20
A

, f12 = −k20
A

, f21 = −A+ g2ρ20
k20
A

, f22 = −f11

Principal equation:
dY

dx
=

k20(1 + gρ0Y )2

ρ0ω2
0 − F 2

− (ρ0ω
2
0 − F 2)Y 2

Similarly we find dispersion relation
ρ1(ω − k0 · V 01)

2 + ρ2(ω − k0 · V 02)
2 = F 2

1 + F 2
2 − (ρ1 − ρ2)gk0

with solutions

ω =
ρ1V 01 + ρ2V 02

ρ1 + ρ2
· k0

±i

√
ρ1ρ2 [(V 01 − V 02) · k0]

2

(ρ1 + ρ2)2
+

ρ1 − ρ2
ρ1 + ρ2

gk0 −
F 2
1 + F 2

2

ρ1 + ρ2

Evidently the magnetic field has a stabilizing effect on the
Kelvin-Helmholtz instability
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Effect of compressibility
For simplicity ignore gravity.

Then f11 = 0, f12 =
κ̃2

A
, f21 = −A, f22 = 0, and

κ̃2 =
ρ20ω

4
0

S
− k20 ⇔ κ̃ = ℜκ̃+ iℑκ̃ with ℑκ̃ > 0 (arbitrarily chosen).

The solution of the principal equation
dY

dx
= −AY 2 − κ̃2

A
is

Y = ±i
κ̃

A
with the upper sign for x > 0 and the lower for x < 0

(the
y′2
y2

= ±iκ̃ ⇔ y2 ∝ e∓ℑκ̃xe±iℜκ̃x, so 1/ℑκ̃ is the decay length

and ±ℜκ̃ is the wavenumber in the x̂ direction)

The dispersion relation is
κ̃1

A1
= − κ̃2

A2
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Typical result for k0 ∥ B0, from Trussoni 2009 (review on KHI)
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The physics of KHI
• Simplest variant: incompressible hydrodynamics

speed decreases

pressure increases

cross section decreases

speed increases (volume conservation)

pressure decreases (Bernoulli)

cross section increases

Always unstable

ω =
ρ1V 01 + ρ2V 02

ρ1 + ρ2
· k0 ± i

√
ρ1ρ2

ρ1 + ρ2
(V 01 − V 02) · k0
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Compressibility effects
• Fast hydrodynamic flows (with sufficiently high Mach numbers)
are stable
The Venturi tube becomes de Laval nozzle
When the section increases the density decreases – and not the speed as in
the incompressible limit – consequently pressure decreases
(Time dependence is also important)
For example, for same fluids without magnetic field, stability when

M =
|V01 − V02|

cs
>

√
8

• Magnetic tension stabilizes

• Magnetic pressure destabilizes (the Venturi tube becomes de
Laval nozzle if the flow approaches the fast magnetosonic
speeds and not the sound speed)
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Study in cylindrical geometry

Important for the stability of astrophysical jets

• contrary to planar geometry: (i) the jet is inhomogeneous
(unavoidable if there is B0ϕ), (ii) there is a spatial scale rj,
(iii) reflections from the symmetry axis may be important

• Besides KHI there are also
current-driven instabilities
(sketch from Yager-Elorriaga 2017)

THE 5TH SUMMER SCHOOL OF HEL.A.S. 17 September 2024, Ioannina



Example in cylindrical geometry

• For simplicity ignore here gravity and relativity

• Unperturbed cylindrical jet:
helical, axisymmetric, cylindrically symmetric and steady flow

V 0 = V0z(r)ẑ + V0ϕ(r)ϕ̂ ,

B0 = B0z(r)ẑ +B0ϕ(r)ϕ̂ ,

ρ0 = ρ0(r) , Π0 = Π0(r) .

Equilibrium condition
dΠ0

dr
+

B2
0ϕ

r
− ρ0

V 2
0ϕ

r
= 0 .
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Linearized equations
With expansion to normal modes (with integer m)

Q(r , z , ϕ , t) = Q0(r) +Q1(r)e
i(mϕ+kz−ωt)

the equations again reduce to

d

dr

(
y1
y2

)
+

(
f11 f12
f21 f22

)(
y1
y2

)
= 0 ,

where y1 = rξ = i
rV1r

ω0
, y2 = Π1 +

y1
r

dΠ0

dr
.

The y1 and y2 are everywhere continuous, the same for their ratio
Y =

y1
y2

that satisfies the principal equation (same as before,

although the expressions of fij are more complicated)

THE 5TH SUMMER SCHOOL OF HEL.A.S. 17 September 2024, Ioannina



Boundary conditions on the axis
• the functions V0ϕ/r, B0ϕ/r and their derivatives are finite at
r = 0 (meaning that the angular velocity and the poloidal current
are regular functions at r = 0)

• For m ̸= 0 the solutions near the axis behave as

y1 ∝ r|m| , y2 ∝ r|m| ,

with fixed constant ratio Y (0) = lim
r→0

rf11 − |m|
rf21

.

Since ξ =
y1
r

only the modes m = ±1 (kink) displace the jet axis

• For m = 0 the solutions near the axis behave as

y2 = const , y1 = −1

2
r2y2 lim

r→0

f12
r

, so Y (0) = 0 .
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Eigenvalue problem

en
v

ir
o

n
m

en
t

jet
(matter + EM field)

jr

ξ

• integrate the principal equation
inside the jet, starting from the axis
(very rare to have analytical solution)
• continue in the environment
• the condition the perturbation to
vanish at r → ∞ gives the dispersion
relation
• in many cases there are analytical
solutions for the environment
(expressed through Bessel functions)
– in that case the matching of
solutions at rj gives the dispersion
relation
• same procedure if there are more
than one contact discontinuities
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A cylindrical plasma column
• Static column with constant B0 = B0ẑ surrounded by vacuum

• The external force-free field is B0 = Bϕ(r)ϕ̂+Bzẑ, with
Bϕ(r) ∝ 1/r and constant Bz

• Assuming incompressibility we can find analytical expressions
and the dispersion relation is

ω2 =
k2B2

0

ρ
+

[kBz +
m
RBϕ(R)]2

ρ

I ′m(kR)Km(kR)

−K ′
m(kR)Im(kR)

−k2[Bϕ(R)]2

ρ

I ′m(kR)

kRIm(kR)

• The first two terms are positive (tension) while the last is
negative (pressure due to Bϕ)
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• Strong enough Bϕ leads to instability.
For m = 1 and kR ≪ 1, k > 2π/L,
where L the length of the column,
we arrive at the Kruskal-Shafranov
stability criterion |Bϕ/Bz| < 2πR/L

• ω is either real (the column is stable) or purely imaginary
(ℜω = 0, so growing perturbation without oscillations)

• The ω2 is minimum (maximum growth rate ℑω) around the
“resonance” kBz +

m

R
Bϕ(R) = 0 (this is k0 ·B0|r=R = 0 since

k0 = kẑ +
m

r
ϕ̂)

• The above characterize the “current-driven instabilities”
(if the column was moving ℜω0 = 0 meaning that
the perturbation is advected with the flow)
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static column, from Appl, Lery & Baty 2000 (pitch P ≡ rBz/Bϕ)
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relativistic jet, from Vlahakis 2024
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CDI is mostly concentrated near the axis
(and displaces the axis, as expected for |m| = 1).

It appears near resonance kco ·Bco = 0 (which is possible only
for m < 0 since Bϕ > 0 and Bz > 0).

It has ℜωco ≈ 0 (advected with the flow).

KHI perturbation mostly near the jet boundary
(even more localized for higher k).
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Pros and cons of normal mode analysis

Disadvantages:

• requires the unperturbed state to be one dimensional, either
function of x in planar geometry, or function of r in cylindrical

• does not cover the nonlinear phase

Advantages:

• gives growth rates

• gives analytical expressions in certain limits
in spite the simplifications these build our understanding
(and can roughly be applied in more complicated cases)
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Other ways to study instabilities
• Variation formulation and the energy principle:
Work with the Lagrangian displacement, and find the variation of
a “potential energy”. The various terms of this expression, when
negative, correspond to instabilities. See e.g. the book by Boyd
& Sanderson, or by Goedbloed, Keppens, & Poeds (references).
⋆ Advantage: helps to understand the instability mechanisms
⋆ Disadvantage: does not give growth rates

• Numerical solutions of the full problem (simulations, PINNs):
⋆ Advantages: It is the only way to study the nonlinear phase and
works for any unperturbed state
⋆ Disadvantage: computationally expensive, hard to cover the
parameter space and control numerical errors (unavoidable in
the small wavelength limit)

The best strategy is always to combine all available methods.
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Summary
⋆ Normal mode analysis and the “principal” equation is a powerful
tool to study instabilities in magnetized plasmas, to explore the
conditions that lead to instability and find the growth rates.

⋆ Magnetic tension stabilizes in all cases and corresponds to
terms F = k0 ·B0 in the dispersion relation.
It’s stabilization effect vanishes when k0 ·B0 = 0 though.

⋆ Magnetic pressure destabilizes in plasma columns.
Also in cases where compressibility is important (like in KHI),
since it replaces the sound speed with the fast magnetosonic
speed (so stability requires higher speeds compared to
hydrodynamic cases).

⋆ Besides the KHI and CDI there are other instabilities not
covered here, e.g. centrifugal, magnetorotational, . . .
(the presented formalism applies to these too)
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