Loukas Vlahos
Aristotle University

17 September 2024

ARISTOTLE
UNIVERSITY
, OF THESSALONIKI
=} = = = E DA




Table of Contents

© Introduction
O Life close to equilibrium and wave turbulence
© Life far from equilibrium and Strong turbulence

© Space, Astrophysical and Laboratory systems in the state of strong turbulence

O The Movies

 How will couple the Coherent Structures in Strong MHD turbulence with
particle energization

@ Fermi acceleration from the Coherent structures in strongly turbulent plasma’s

O Numerical tools to explore the MHD simulation and the energization of
particles

O Main points to take home from this talk
(D References

University of Thessaloniki, Greece 2/68



The dream team

University of Thessalo 3/68



The dream team

University of Thessaloniki, Greece 4/68



Your Name



Introduction

MHD EQUATIONS

The core MHD equations consist of: (Krall & Trivelpiece 1973)

Theorem
Continuity Equation (Mass Conservation):

ap _
E—I—V(pv)—o

where p is the mass density, and v is the fluid velocity.

Theorem

Momentum Equation (Navier-Stokes Equation with Lorentz Force):

p(aa‘tf—i—(v-V)v) =-Vp+JxB+vViv

where p is the pressure, B is the magnetic field, J =V x B/ug is the current
density, v is the kinematic viscosity, and g is the permeability of free space.
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S .
MHD EQUATIONS
Induction Equation (Magnetic Field Evolution):
0B _
ot
0

V x (v x B) +nV’B

where n = ﬁ is the magnetic diffusivity, and o is the electrical conductivity.

Incompressibility Condition (if applicable):

V-v=0
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Many MHD turbulence studies often assume this condition to simplify the analysis.
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MHD Equations

Ohm's Law for a Moving Conductor:

fluid.

E+vxB=nJ

where E is the electric field, J is the current density, and n is the resistivity of the
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Introduction

Stability of MHD Equations

Dropping the derivative and searching for the stable solution

(EO(F), po(7), Uo(7))), if any, from the magnetic field topology, the density and
the velocity of the fluid
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Life close to equilibrium and wave turbulence

Perturbation theory

(see details in Chen (2016) )
We perturb the stability

p1(7,t) << po
B, (7, t) << By

’171(’F, t) << Uy

end searching for wave-like solutions, assuming that the perturbations have the
form

p1, B1,v1 ~ exp(—i(E -7+ wt))

discover a particular dispersion relation,
wA(k) = kVA
where V4 = B2 /4mpy is the Alfvén speed
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Wave turbulence

Bi(7,t) = Y Bog exp(—i(k - 7+ wa(k)t + ¢x))
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Life close to equilibrium and wave turbulence

" Particle distributions near equilibrium.”

Based on the kinetic theory, when a gas is in equilibrium, its velocity distribution
follows a Maxwellian distribution.
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Life close to equilibrium and wave turbulence
Instabilities

We return to the MHD equations and look for wave solutions, but this time, we
assume that the wave has an imaginary part.
w=wa(k) + iy
introducing this term on the wave formulae
By = Byexp(—i(k - 7+ wa(k)t) + yt) = [Boexp(yt)]exp(—i(k - 7+ wa(k)t))
v > 0 growth and v < 0 damping

=4
;ia &

Unstable Alfvén Waves
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Life close to equilibrium and wave turbulence

How to stabilize the unstable wave spectrum?

We deal with nonlinear wave-wave coupling within weak (wave) turbulence
(Vedenov, 1963).

Let's represent the three interacting waves using their amplitudes, denoted as Bi,
Bs, and Bj3. Each wave is characterized by its frequency w; and wavenumber EZ
for i = 1,2, 3. The conditions for a resonant three-wave interaction are:
Frequency Matching Condition:

W1 = Wy + ws
Wavenumber Matching Condition:
ki = ko + ks

These conditions ensure that energy and momentum are conserved in the
interaction.
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Life close to equilibrium and wave turbulence

Stabilizing wave growth in weak turbulence

Governing Equations for the wave amplitudes: A set of coupled differential
equations governs the evolution of the complex amplitudes B (t), Bs(t) and
ég(t). These are typically derived from the governing equations of the medium
(e.g., fluid equations, Maxwell's equations) using perturbation theory or a
multi-scale analysis. see wave interaction

Collisions and wave-particle interactions thermalize the particles in the end.
Example:

Bump-on-tail instability

A. A.Vedenov, E. P.
Velikhov, R. Z. Sagdeev,
Nucl. Fusion 1, 82
(1961).

W. E. Drummond and D.
Pines, Nucl. Fusion Suppl.
) 3, 1049 (1962)
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Life far from equilibrium and Strong turbulence

Unstable waves and the way to strong turbulence

Questions
o What happens if the wave amplitude grows
exponentially and reaches an amplitude B; > B
o Let us find out by using the MHD equations and drive
them initially with a wave spectrum with large

amplitude magnetic fluctuations
Vlahos & lIsliker (2023)
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation

Electric field in 3D MHD turbulence

Electric field Magnetic field magnitude
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation
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Life far from equilibrium and Strong turbulence

Simulation of externally driven large amplitude fluctuation

Galsgaard & Nordlund (1996); Rappazzo et al. (2013)
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation in magnetized
plasmas
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation

|B| 1G] [BI (1G]

Isotropic Anisotropic
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Life far from equilibrium and Strong turbulence

Current sheets and the way to strong turbulence

Onofri et al. (2006)
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Life far from equilibrium and Strong turbulence

Simulation of large amplitude fluctuation in the vicinity of
a shock

Matsumoto et al. (2015)

downstream upstream

40 42 44 46 48 50
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

A short list of Space, Astrophysical, and Laboratory
systems in the state of strong turbulence

©0000000O0O0

Edge of Tokamak

Convection zone

Solar Atmosphere

Solar Wind

Solar wind-Earths Bow Shock-Magnetosheath-Magnetotail-Heliopause
Astrophysical Jets

Accretion Disks

Interstellar space in our galaxy

NS-NS collisions

SNR

University of Thessaloniki, Greece
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Edge of Tokamak
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Convection Zone

Normalized entropy

(s = (s))/Srms

Magnetic field strength
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Active Regions as convection zone driven systems
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Active Regions driven to strong Turbulence by
convection zone
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Active Regions driven to strong Turbulence by
convection zone
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Wind Turbulence
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Solar Wind Turbulence

Magnetmheath
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Soar Wind turbulence and Earths Bow Shock interaction

Z [Rg]
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Solar wind
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Simulation of large amplitude fluctuation in accretion disks
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Simulation of accretion disk and turbulent jets
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Simulation of large amplitude fluctuation in accretion disks

University of Thessaloniki, Greece 41 /68



Space, Astrophysical and Laboratory systems in the state of strong turbulence

Main points on life far from equilibrium

o When in an unstable system, the magnetic fluctuations are equal
or larger than the ambient magnetic (strong turbulence), coherent
structures replace the linear waves

o Coherent structures are Current Sheets (CS), magnetic filaments,
large amplitude magnetic disturbances, vortices, and shocks
(Vlahos & Isliker 2023)
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Space, Astrophysical and Laboratory systems in the state of strong turbulence

Coherent Structures
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Coherent Structures
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The Movies

PROPOSAL: Identification and Characterisation of
Coherent Structures (CoS) in 3D strong turbulent plasma

We will try to identify and characterize Coherent Structures (CoSs)
appearing in 3D magnetohydrodynamic (MHD) turbulent plasma and
satellite data. We propose developing numerical tools based on trained
and physics-informed neural networks to identify and characterize all
CoSs inside the 3D turbulent simulations and observations.
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energization

Strong Turbulence, dynamo and energization of particles

Let us go back to the MHD equations

Theorem

Induction Equation (Magnetic Field Evolution):

%—?:VX(vaHnWB

where n = %ﬂo is the magnetic diffusivity, and o is the electrical conductivity.

Theorem

Ohm’s Law for a Moving Conductor:
E+vxB=nJ

where E is the electric field, J is the current density, and n is the resistivity of the
fluid.
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energization

Strong Turbulence and particle heating and acceleration

In systems close to equilibrium, the energy distribution is close to Maxwell’s
equation (Thermal distribution). In systems far from equilibrium where strong
turbulence is present, the nonthermal particles appear in the tail of the energy
distribution.
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energiz‘ation
The non-thermal Universe

o Solar Atmosphere (Coronal Heating, Flares, Coronal mass
ejections)

o The solar wind, Bow shock magnetosheath, and magnetotail

o Cosmic Rays

o Nonthermal radiation (Gamma and X radiation sources)
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Coherent structures and strong turbulence
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energization

Cosmic Rays and Gamma rays from the Cosmos

Fermi two-year all-sky map

Coherent structures and strong turbulence
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Heating of the bulk and Acceleration of the tail

Ohm's Law for a Moving Conductor:

E+vxB=nJ

where E is the electric field, J is the current density, and 1 is the resistivity of the
fluid.
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Fermi accelration from the Coherent structures in strongly turbulert plasma’s
The legacy of Enrico Fermi on particle energization is
space plasmas

Stochastic and systematic acceleration (Fermi 1949, 1954)
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Fermi accelration from the Coherent structures in strongly turbulert plasma’s
Systematic Acceleration from Magnetic reconnection

Guo et al. (2024)
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Stochastic and Systematic acceleration

Heating and acceleration of the tail
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Numerical tools to explore the MHD simulation and the energization of particles

Test particle motion in MHD fields

Isliker et al. (2019)

Statistcal Peopartian af U

Level 3 (MHD+-kinetic): Test particle evolution inside the
MHD fields

The relativistic guiding center equations (without collisions) are for
the evolution of the position r and the parallel component w) of
the relativistic 4-velocity of the particles,

dr 1 [, = i :
di'_ﬂl"_'jrB +hx(m?B—E)] (1)
dn| 9 . {u )
— = ————B". | =VB-E 2
dt m.-JB'I ( "y : (2)

where B* = B + %‘“Lr,'i"xl‘:-. E‘_-E—%uﬁ%. u;%isthe

magnetic moment, v = 1}'1 + f_}i B = |B|, b= B/E, v, is the
perpendicular component of the relativistic 4-velocity, and q, mg
are the particle charge and rest-mass, respectively.
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Numerical tools to explore the MHD simulation and the energization of particles

Test particle motion in MHD fields
Isliker et al. (2017)

Iog10(EKIR).
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Emerging magnetic flux and current sheet fragmentation
Archontis & Hood (2013)
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Numerical tools to explore the MHD simulation and the energization of particles

Test particle motion in MHD fields
Isliker et al. (2019)
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Numerical tools to explore the MHD simulation and the energization of particles

Test particle motion in MHD fields: Monde Carlo
simulations

Sioulas et al. (2022)
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Test particle motion in MHD fields: Monde Carlo
simulations

Sioulas et al. (2022)

T
= = = Maxwellian fit, KT = 10 keV
- = - Power-law fit, z= 2.1

(o s ot st )

. (S R ———

-6
= 10°F T
B
Q
9 \ !
107+ % I T
& |
\ 1
\ 1
' |
\ 1
) 1
10-12 L[~ Initia distrioution ) 1 ]
Distribution after t = 20 sec I. Il
1 L 1l
10° 102 104 108 108
W.._ [eV]
] & = = = HAE

Your Name September 20, 2024



Your Name



Main points to take home from this talk

Life close to equilibrium ‘

Linearly unstable waves and weak (wave) turbulence By /By << 1 are
mathematically tractable but not realistic for very active space, astrophysical, and
laboratory plasmas

Life far from equilibrium

When the unstable waves reach the level where the magnetic fluctuations
B3 /By > 1, coherent structures appear and are distributed in space

Coherent structures are heating the bulk and acceleration of the tail on most
space, astrophysical, and laboratory sources which are far from equilibrium ‘

Fermi and the two energization mechanisms: Stochastic and systematic ‘

The stochastic interaction of particles with coherent structures is behind the bulk
heating, and systematic acceleration is responsible for the formation of the
high-energy tail.

Tracing particles inside strong turbulence, we discover the Kappa distribution
(heating and the high energy tail).
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